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1 Introduction

Incomplete insurance market economies provide a useful framework for examining many rele-

vant aspects of inequalities and individual risks. In these models, infinitely-lived agents face

incomplete insurance markets and borrowing limits that prevent them from perfectly hedging

their idiosyncratic risk, in line with the Bewley-Huggett-Aiyagari literature (Bewley 1983, Imro-

horoğlu 1989, Huggett 1993, Aiyagari 1994, Krusell and Smith 1998). These frameworks are now

widely used, since they fill a gap between micro- and macroeconomics, and enable the inclusion

of aggregate shocks and a number of additional frictions on both the goods and labor markets.

However, little is known about optimal policies in these environments due to the difficulties

generated by the large and time-varying heterogeneity across agents. This is unfortunate, since

a vast literature suggests that the interaction between wealth heterogeneity and capital accumu-

lation has first-order implications for the design of optimal policies. In particular, the optimal

design of time-varying unemployment benefits in an economy with fluctuating unemployment

risk has not been studied in the general case yet, due to the difficulties generated by change in

precautionary savings over the business cycle.

This paper presents a projection theory that can be used to derive optimal policies in in-

complete insurance market economies with aggregate shocks. In incomplete insurance market

economies, agents differ according to the full history of their idiosyncratic risk realizations.

Huggett (1993) and Aiyagari (1994), using the results of Hopenhayn and Prescott (1992), have

shown that economies without aggregate risk have a recursive structure when the distribution

of wealth is introduced as a state variable. Unfortunately, the distribution of wealth has infinite

support, which is at the root of many difficulties. Our main idea is to go back to the model

sequential representation, so as to construct a projection theory on any finite partition of the set

of idiosyncratic histories. This theory defines an exact economic model on a finite state space.

Our model replicates the aggregate dynamics of the initial model, except that it is expressed

using a finite number of “history bins” (groups of agents) instead of individual agents.

The theory is developed using two types of finite partitions. The first type, referred to as an

explicit partition, involves a truncation in the space of idiosyncratic histories, such that agents

with the same idiosyncratic history for the last N periods are assumed to belong to the same

history bin. If there are k idiosyncratic states, the number of these N -histories – and thus the

number of different bins – amounts to kN . Interestingly, each history bin features time-varying,

within-bin heterogeneity, as agents belonging to the same bin may have different histories N + 1
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periods ago. The projection on this first type of partition is simple to implement, but the

number of bins grows exponentially with the truncation length. The second type of partition,

referred to as an implicit partition, generalizes the previous construction to reduce the number

of bins. The idea of implicit partitions involves constructing bins of individual histories from

a partition of the steady-state wealth distribution through the one-to-one mapping between

individual history and steady-state wealth (see Huggett 1993, for instance). Importantly, the

implicit partition is a partition in the space of idiosyncratic histories. In the literature review

below, we carefully explain the difference between the projection in the space of histories and

other projection techniques, notably in the space of wealth used by Reiter (2009), for instance.

The key part of our projection theory is to properly aggregate individual choices (such

as wealth, consumption, or savings) and individual constraints (such as Euler equations and

budget constraints) at bin level. The resulting model is the so-called projected model, which is

fully expressed in terms of the bins rather than the continuum of individual agents.1 We show

that the projected model replicates the aggregate dynamics of the model (in terms of prices and

quantities, such as capital, labor, and output) thanks to the introduction of a finite number

of time-varying correcting coefficients in Euler equations and budget constraints, which have

intuitive interpretations.

However, the true model solution is needed to fully characterize the projected model. To

make the projected model operational, we construct an approximated model, which is a pro-

jected model in which the correcting coefficients are fixed at their steady-state values. The

approximated model thus assumes that the within-bin heterogeneity, although present, is not

time-varying. We prove that the approximated model can be made arbitrarily close to the

true model by choosing small enough bins. In addition, a small number of history bins pro-

vides a very good approximation of the dynamics of the model – whose outcomes cannot be

distinguished from other solution techniques. Finally, in the case of explicit partitions, the ap-

proximated model can be micro-founded by a model with a specific form of insurance-market

incompleteness, which may provide additional insights.

The advantage of this projection method is twofold. First, the approximated model has

a simple structure with a finite number of bins. The tools developed in dynamic contracts,

sometimes referred to as the Lagrangian approach and developed by Marcet and Marimon

(2011), can thus be used to solve the Ramsey problem with an arbitrary set of instruments for
1In terms of wording, the projection of the model refers both to the reduction of the dimensionality of the

state space by aggregation and the explicit derivation of laws of motion of the relevant aggregates. A bin is an
element of the partition and is thus a set of idiosyncratic histories.
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the planner. It is therefore possible to derive optimal policies with heterogeneous agents and

aggregate shocks. The accuracy of the approximated model can easily be gauged, for instance, by

studying the convergence properties of the correcting coefficients on increasingly finer partitions.

The second advantage of the approximated model is that it is extremely fast. If we compare the

different solution techniques, as in Den Haan (2010), a standard model with aggregate shocks

can be solved in less than two seconds with a solver such as Dynare, while the outcomes do not

significantly differ from those of the standard Krusell-Smith resolution.

We use projection theory to characterize the optimal unemployment benefits over the business

cycle in the economy considered by Krueger, Mittman, and Perri (2018), which is a generalization

of the economy studied in Krusell and Smith (1998). Agents face both productivity risk and

time-varying employment risk. The economy is hit by aggregate shocks that affect technology

and labor market transitions. Agents choose their labor supply when working, consume, save,

and face incomplete markets for the idiosyncratic risk and credit constraints. In this economy, a

planner chooses the level of unemployment benefits in each period, which must be fully financed

by a distorting labor tax. Although the economic trade-off is the standard trade-off between

insurance and incentives, this problem is very hard to solve in general equilibrium. The level of

unemployment benefits directly affects agents’ welfare as well as their saving decisions and the

dynamics of interest rates and wages. The projection method enables this resolution. The main

quantitative finding is that optimal unemployment benefits are time-varying and procyclical.

The procyclicality of unemployment benefits corresponds to a procyclical distorting labor tax.

Compared with an economy where the unemployment benefit is constant and fixed at its steady-

state value, the time-varying replacement rate reduces output volatility by 13%.

Literature review. This paper first contributes to the literature on incomplete insurance

market economies with aggregate shocks. There are now various types of techniques for solving

these models. Our projection method is related to other perturbation and projection methods.

The recent work of Boppart, Krusell, and Mitman (2018) shows that these perturbation methods

are accurate approximations of the dynamics of such models in many relevant environments,

compared with global solution techniques. In particular, the closest methods to ours are Reiter

(2009). The main idea proposed in these two methods is to project the distribution of wealth

on a finite set to simulate the model. The main difference compared with our model is that

our solution involves projecting on the space of histories and not on the space of wealth. This

allows us to construct an approximated model, which is crucial for solving Ramsey programs.
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Another difference is that our method can be solved using standard computational tools such

as Dynare, which offers some benefits in terms of implementation simplicity and computational

speed. Finally, the partition in the space of idiosyncratic histories is different from partitions in

the space of aggregate histories, which can be used as an approximation device (see for instance

Chien, Cole, and Lustig (2011)). Indeed, our partitions is used to derive an exact representation

of a projected model, which we simulate wih perturbation methods. To our knowledge, this

paper is the first to use the partition in the space of idiosyncratic histories.

Second, our paper contributes to the recent literature on optimal Ramsay policies in hetero-

geneous agent models without aggregate shocks. An initial paper studying Ramsey allocation

in a general setup is that of Aiyagari (1995), who provides a characterization of the optimal

capital tax. Other papers, such as Aiyagari and McGrattan (1998) or Krueger and Ludwig

(2016), derive optimal policies by maximizing the aggregate steady-state welfare, rather than

by determining the optimal Ramsey policy. However, the steady-state welfare criterion does

not account for transitions and we show that it can generate an allocation that significantly

differs from the optimal Ramsey allocation. A significant step in the resolution of Ramsey pro-

grams in such set-ups is Açikgöz (2015), further developed in Açikgöz, Hagedorn, Holter, and

Wang (2018), who use an explicit Lagrangian approach to derive the planner’s first-order con-

ditions. Dyrda and Pedroni (2016) compute optimal policies without considering the planner’s

first-order conditions, but instead by directly maximizing the intertemporal steady-state, which

is computationally very intensive. Nuño and Moll (2018) consider a continuous-time framework

in which they use the techniques of Ahn, Kaplan, Moll, Winberry, and Wolf (2017) to sim-

plify the derivation of the planner’s first-order conditions. The structure of our approximated

model considerably simplifies the computation of optimal policies. As the state-space has a fi-

nite dimension, we show that steady-state Lagrange multipliers can be derived by simple matrix

algebra, which is an additional advantage of our method.

Third, our paper contributes to the literature on optimal Ramsey policies in heterogeneous

agent economies with aggregate shocks, which is currently rather thin. A first strategy used in

the literature is to simplify the economy to analyze a tractable equilibrium. In these models the

wealth distribution only has one or two mass points (McKay and Reis 2016, Bilbiie and Ragot

2017, and Challe 2018, among others). These models provide important economic insights but

they cannot identify relevant properties related to the time-varying wealth distribution. Their

quantitative relevance is thus hard to assess. To the best of our knowledge, the only paper

deriving optimal Ramsey policy in a general environment with incomplete insurance markets
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and aggregate shocks is Bhandari, Evans, Golosov, and Sargent (2017). Their method relies on

a “primal approach” in which credit constraints cannot be occasionally binding. They can be

either always binding or never binding. The construction of our approximated model works well

with occasionally binding credit constraints, which is the relevant case in many environments.

Finally, regarding the application, our paper contributes to the literature on optimal unem-

ployment benefits. This literature is huge and a large part of it employs the sufficient-statistics

approach (see the surveys of Chetty 2009, Chetty and Finkelstein 2013, and Kolsrud, Landais,

Nilsson, and Spinnewijn 2018 for recent developments), based on partial-equilibrium analysis. A

handful of papers introduce general equilibrium effects, such as Mitman and Rabinovich (2015),

Landais, Michaillat, and Saez (2018) or Ábrahám, Brogueira de Sousa, Marimon, and Mayr

(2019), but they focus on labor market externalities and not on saving distortions. To the best

of our knowledge, the only paper analyzing optimal unemployment insurance in general equilib-

rium with saving choices is Krusell, Mukoyama, and Sahin (2010). To simplify the quantitative

exercise, the authors perform a welfare analysis by comparing different steady-states with differ-

ent levels of unemployment benefits. Instead, we solve for the time-varying solution of a general

Ramsey problem in an economy with aggregate shocks.

The rest of the paper is organized as follows. In Section 2 we present the environment. In

Section 3 we present the general projection theory in the space of idiosyncratic histories. In

Section 4 we construct the approximated model and in Section 5 we derive optimal Ramsey

policies and discuss the economic trade-off for optimal unemployment benefits over the business

cycle. Section 6 sets out our quantitative analysis.

2 The economy

Time is discrete and indexed by t = 0, 1, 2, ... The economy is populated by a continuum of

agents of measure 1, distributed on an interval I according to a measure ` (·). We follow Green

(1994) and assume that the law of large numbers holds.

2.1 Preferences

In each period, agents derive utility from private consumption c and disutility from labor l.

The period utility function, denoted by U(c, l), is assumed to be of the Greenwood-Hercowitz-
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Huffman (GHH) type, exhibiting no wealth effect for the labor supply:

U(c, l) = u

(
c− χ−1 l1+1/ϕ

1 + 1/ϕ

)
, (1)

where ϕ > 0 is the Frisch elasticity of labor supply, χ > 0 scales labor disutility, and u : R+ → R

is twice continuously derivable, increasing, and concave, with u′(0) = ∞. Our results do not

rely on the GHH functional form and we could consider a more general utility function U . The

algebra is however simplified, especially in the Ramsey program, because of the absence of a

wealth effect for the labor supply.

Agents have standard additive intertemporal preferences, with a constant discount factor

β > 0. They therefore rank consumption and labor streams, denoted respectively by (ct)t≥0 and

(lt)t≥0, using the intertemporal utility criterion
∑∞
t=0 β

tU(ct, lt).

2.2 Risks

We consider a general setup where agents face an aggregate risk, a time-varying unemployment

risk, and a productivity risk, as modeled by Krueger, Mittman, and Perri (2018). As will be clear

in the quantitative analysis below, this general setup allows us to match the wealth distribution

and the realistic dynamics of the labor market.2

Aggregate risk. The aggregate risk affects both aggregate productivity and unemployment

risk. At a given date t, the aggregate state is denoted by zt and takes values in the (possibly

continuous) state space Z ⊂ R+. We assume that the aggregate risk is a Markov process. The

history of aggregate shocks up to time t is denoted by zt = {z0, . . . , zt} ∈ Zt+1. For the sake of

clarity, for any random variable Xt : Zt+1 → R, we will denote its realization in state zt by Xt,

instead of Xt(zt),

Employment risk. At the beginning of each period, each agent i ∈ I faces an uninsurable

idiosyncratic employment risk, denoted by eit at date t. The employment status eit can take two

values, e and u, corresponding to employment and unemployment, respectively. We denote by

E = {e, u} the set of possible employment statuses. An employed agent with eit = e can freely

choose her labor supply lit. An unemployed agent with eit = u cannot work and will receive

an unemployment benefit financed by a distorting tax on labor and will suffer from a fixed
2In contrast to Krueger, Mittman, and Perri (2018), we introduce endogenous labor supply, such that labor

taxes are distorting. In addition, we simplify the economy, removing the age dimension and non-persistent
productivity shocks, as they are not necessary for obtaining a realistic labor market and wealth outcomes.
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disutility reflecting a domestic effort. These aspects are further described below. A history of

idiosyncratic shocks up to date t for agent i is denoted by ei,t = {ei0, . . . , eit} ∈ E t+1.

The employment status (eit)t≥0 follows a discrete Markov process with transition matrix

Mt(zt) ∈ [0, 1]2×2, which is assumed to depend on the history of aggregate shocks up to date t.

The job separation rate between periods t− 1 and t is denoted by Πeu(zt) = 1−Πee(zt), while

Πue(zt) = 1 − Πuu(zt) is the job finding rate between t − 1 and t. The time-varying transition

matrix across employment statuses is therefore:

Mt(zt) =

 Πuu(zt) Πue(zt)

Πeu(zt) Πee(zt)

 . (2)

We denote by Su,t and Se,t the implied population shares of unemployed and employed agents,

respectively, with Su,t + Se,t = 1.

Productivity risk. Agents’ individual productivity, denoted by yit, is stochastic and takes

values in a finite set Y ⊂ R+. Large values in Y correspond to high productivities. The before-

tax wage earned by an employed agent i is the product of the aggregate wage wt, dependent on

aggregate shock, of labor effort lit, and of individual productivity yit. The total before-tax wage

is therefore yitwtlit. An unemployed agent will also carry an idiosyncratic productivity level that

will affect her unemployment benefits and her disutility level, denoted by ζy (for productivity

y ∈ Y), associated with domestic production.

The history up to date t of the productivity shocks of an agent i is denoted by yi,t =

{yi0, . . . , yit}. The productivity status follows a first-order Markov process where the transition

probability from state yit−1 = y to yit = y′ is constant and denoted by Πyy′ .3 In particular, it is

independent of the agent’s employment status. We denote by Sy the share of agents endowed

with individual productivity level y. This share is constant through time because of assumptions

regarding transition probabilities Πyy′ .

The individual state of any agent i is characterized by her employment status and her

productivity level. We will denote by sit = (eit, yit) the date-t individual status of any agent,

whose possible values lie in the set S = E ×Y. Finally, we denote by si,t = {si0, . . . , sit} a history

until period t. From transition probabilities for employment and productivity, one can derive

the measure µt : St+1 → [0, 1], such that µt
(
st
)
is the measure of agents with history st in

period t.
3We follow Krueger, Mittman, and Perri (2018) and denote all transitions by Π. They will only be distinguished

by subscripts.
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2.3 Production

The good is produced by a unique profit-maximizing representative firm. This firm is endowed

with production technology that transforms, at date t, labor Lt (in efficient units) and capital

Kt−1 into Yt output units of the single good. The production function F is a Cobb-Douglas

function with parameter α ∈ (0, 1) featuring constant returns-to-scale. The capital must be in-

stalled one period before production and the total productivity factor Zt is stochastic. Denoting

by δ > 0 the constant capital depreciation, the net output Yt is formally defined as follows:

Yt = F (Zt,Kt−1, Lt) = ZtK
α
t−1L

1−α
t − δKt−1, (3)

where the total productivity factor is the exponential of the aggregate shock zt: Zt = exp(zt).

The two factor prices at date t are the aggregate before-tax wage rate wt and the capital

return rt. The profit maximization of the producing firm implies the following factor prices:

wt = FL(Zt,Kt−1, Lt) and rt = FK(Zt,Kt−1, Lt). (4)

2.4 Unemployment insurance

A benevolent government manages an unemployment insurance (UI) scheme, in which labor

taxes are raised to finance unemployment benefits. As labor supply is endogenous, labor tax is

distorting. The government thus faces the standard trade-off between insurance and efficiency.

At any date t, unemployed agents receive an unemployment benefit that is equal to a constant

fraction of the wage the agent would earn if she were employed (with the same productivity level).

The replacement rate being by denoted φt, the unemployment benefit of an agent i endowed

with productivity yit equals φtwtyitlit,e, where lit,e is the labor supply of a (fictive) employed agent

with productivity yit and wage rate wt. We follow Krueger, Mittman, and Perri (2018) for this

specification. From the agents’ perspective, the replacement rate is an exogenous process that

depends on the aggregate state φt = φt
(
zt
)
.

Unemployment benefits are financed solely by the labor tax, which is paid by employed agents

only. Taxes amount to a constant share τt of the employed agents’ wage and this proportion is

identical for all employed agents. The contribution τt is set such that the UI scheme budget is

balanced at any date t, no social debt being allowed:

φtwt

ˆ
i∈Ut

yitl
i
t,e`(di) = τtwt

ˆ
i∈I\Ut

yitl
i
t`(di), (5)
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where Ut ⊂ I is the set of unemployed agents at t and I \ Ut the set of employed agents.

2.5 Agents’ program and resource constraints

2.5.1 Sequential formulation

We consider an agent i ∈ I. She can save in an asset that pays the gross interest rate 1+rt. She

is prevented from borrowing too much and her savings must remain greater than an exogenous

threshold denoted −ā. At date 0, the agent chooses the consumption (cit)t≥0, labor supply

(lit)t≥0, and saving plans (ait)t≥0 that maximize her intertemporal utility, subject to a budget

constraint and the previous borrowing limit. Formally, her program is, for a given ai−1:

max
{cit,lit,ait}

∞
t=0

E0

∞∑
t=0

βtu

(
cit − χ−1 l

i,1+1/ϕ
t

1 + 1/ϕ

)
(6)

cit + ait = (1 + rt)ait−1 +
(
(1− τt)1eit=e + φt1eit=u

)
lity

i
twt, (7)

ait ≥ −ā, (8)

where 1eit=e is an indicator function equal to 1 if the agent is currently employed (eit = e) and to 0

otherwise. The budget constraint (7) is standard and the expression ((1−τt)1eit=e+φt1eit=u)lityitwt
is a compact formulation for the net wage (i.e., after taxes and after unemployment benefits)

of the agent i endowed with productivity yit, depending on whether she is employed (eit = e) or

unemployed (eit = u). Finally, initial wealth ai−1 is given for any agent i.

We denote by βtνit the Lagrange multiplier of the credit constraint of agent i. The Lagrange

multiplier is obviously null when the agent is not credit-constrained. Taking advantage of the

GHH utility function, the first-order conditions of an employed agent’s program (6)–(8) can be

written as:

u′(cit − χ−1 l
i,1+1/ϕ
t

1 + 1/ϕ) = βEt

(1 + rt+1)u′(cit+1 − χ−1 l
i,1+1/ϕ
t+1

1 + 1/ϕ)

+ νit , (9)

l
i,1/ϕ
t = χ(1− τt)wtyit1eit=e, (10)

and, for unemployed agents:

u′(cit − χ−1
ζ

1+1/ϕ
yit

1 + 1/ϕ) = βEt

(1 + rt+1)u′(cit+1 − χ−1
ζ

1+1/ϕ
yit+1

1 + 1/ϕ)

+ νit . (11)

The GHH utility function implies a very simple labor supply expression, which only depends on
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current productivity and the after-tax real wage. Unemployed agents supply no labor, but they

earn unemployment benefits and suffer from disutility related to home production.

We now turn to economy-wide constraints. First, financial market clearing implies the fol-

lowing relationship: ˆ
i
ait`(di) = Kt. (12)

The clearing of the goods market implies that total consumption, comprising private individual

consumption, private firm consumption, and public consumption, equals total supply, itself the

sum of output and past capital:
ˆ
i
cit`(di) +Kt = Yt +Kt−1. (13)

Since every employed agent endogenously supplies labor, while unemployed agents do not work,

the labor Lt in efficient units is defined as:

Lt =
ˆ
i∈I\Ut

yitl
i
t` (di) . (14)

Using the transition matrix Mt in equation (2), we deduce that the law of motion for the

populations of employed and unemployed agents, denoted by Se,t and Su,t respectively, is:

Su,t = 1− Se,t = Πeu,tSe,t−1 + Πuu,tSu,t−1. (15)

The constant share of agents Sy with productivity y verifies: Sy =
∑
y∈Y Sy′Πy′y. We can now

formulate our equilibrium definition.

Definition 1 (Sequential equilibrium) A sequential competitive equilibrium is a collection

of individual allocations
(
cit, l

i
t, a

i
t

)
t≥0,i∈I , of aggregate quantities (Kt, Lt, Yt)t≥0, of price processes

(wt, rt)t≥0, and of UI policy (τt, φt)t≥0, such that, for an initial wealth distribution
(
ai−1

)
i∈I , and

for initial values of capital stock K−1 =
´
i a
i
−1`(di), and of the aggregate shock z−1, we have:

1. given prices, individual strategies
(
cit, l

i
t, a

i
t

)
t≥0,i∈I solve the agent’s optimization program

in equations (6)–(8);

2. financial, labor, and goods markets clear at all dates: for any t ≥ 0, equations (12), (13),

and (14) hold;

3. the UI budget is balanced at all dates: equation (5) holds for all t ≥ 0;

4. factor prices (wt, rt)t≥0 are consistent with the firm’s program (4).
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The goal of this paper is to determine the replacement rate process that generates the

sequential equilibrium-maximizing aggregate welfare, using a utilitarian welfare criteria. This

is a difficult question, as the replacement rate affects the saving decisions of all agents, the

capital stock, and the price dynamics. We propose a solution that involves three steps. First,

we provide the projection theory of the model in the space of idiosyncratic histories, using

a finite partition of this space (Section 3), and then construct the projected model. Second,

we construct a consistent approximated model, which has a finite state-space representation

(Section 4). Finally, we show how to solve the Ramsey problem using the approximated model

(Section 5).

3 The projection theory

3.1 Partitions

At any date t, each agent i ∈ I is uniquely characterized by her personal history of idiosyncratic

risk realizations si,t = (ei,t, yi,t), which includes both employment and productivity risk histories.

Obviously, the number of idiosyncratic risk histories grows exponentially over time and the

steady-state is characterized by an unbounded number of idiosyncratic histories. The core idea

of our projection method is to group agents in a finite number of bins, according to their

idiosyncratic histories. Henceforth, the economy will be represented by this finite set of bins

and not by the continuum of agents I.

More formally, the set of bins is defined as a partition of the set of idiosyncratic histories.

A partition H is a finite collection of sets of idiosyncratic histories, such that at any date t, an

idiosyncratic history st belongs to one and exactly one element h of the partition H: for any

st, a unique h ∈ H exists, such that st ∈ h. An element h ∈ H will be called a history bin and

can be thought of as a collection of individual histories – see our examples below for an explicit

description. In the remainder of the paper, we will say that an agent belongs to h ∈ H at date t

if her idiosyncratic history st belongs to h. Finally, we will say that a partition H is a refinement

of a partition H̄ if any elements of H̄ are a union of elements of H. In other words, H is finer

than H̄.

To obtain this finite-state model representation, we project individual programs and first-

order conditions onto the history partition H, such that bin variables and the law of motions

are consistent with each other. A preliminary, though crucial, remark is that each history

bin h ∈ H embeds some time-varying heterogeneity among agents, since different idiosyncratic

12



histories are represented with the same bin h. We derive below the formal way of accounting

for this within-bin heterogeneity.

For the sake of concreteness, we now present two types of partitions, explicit partitions based

on the truncation of idiosyncratic histories, and implicit partitions, based on the steady-state

distribution of wealth.

3.1.1 Explicit partition

A first solution for constructing a partition consists in relying on the truncation of idiosyncratic

histories of an exogenously given length N > 0: we regroup all agents who have the same id-

iosyncratic histories for the last N periods in the same bin. More precisely, each idiosyncratic

history st is represented by the realizations of idiosyncratic status over the N consecutive pre-

vious periods, which is denoted by a vector sN = (s−N+1, . . . , s0) ∈ SN . A history bin h of

the partition H is then the collection of all individual histories, whose realizations in the last

N periods are identical and equal to an N -length vector sN ∈ SN . Formally, the history bin h

corresponding to the vector sN can be written as
⋃
t≥0{st ∈ St : (st−N+1, . . . , st) = sN}. The

bin h is therefore isomorphic to an N -length vector sN ∈ SN and the partition H itself is also

isomorphic to the set SN of idiosyncratic histories of length N . We can thus simply identify

history bins h with N -length vectors sN ∈ SN . We note sN � s̃N , if sN in period t is a possible

continuation of s̃N in period t− 1.4 When an agent is in bin h̃, corresponding to the vector s̃N

in periods t − 1, the probability that she switches to bin h, corresponding to the vector sN in

period t, is denoted by ΠS
s̃NsN ,t

, with:

ΠS
s̃NsN ,t = Πỹ0y0Πẽ0e0,t1sN�s̃N . (16)

In this expression, the quantity Πỹ0y0Πẽ0,e0,t is the transition probability between idiosyncratic

states s̃0 = (ỹ0, ẽ0) corresponding to bin h̃ and s0 = (yh, eh), corresponding to bin h.

Explicit partitions are intuitive partitions and are easy to implement, but they generate

history bins with very heterogeneous sizes that depend on the relative persistence of individual

states.5 As a consequence, a relatively large N may be needed to properly capture the het-

erogeneity within certain history bins. The cost of this large N is a large number of bins –
4The continuation of a finite dimensional vector is associated with a truncation, and is thus different from the

continuation of a whole history: sN � s̃N if sNi = s̃Ni−1 , i = 1, ...,−N + 1.
5If we further add a pooling mechanism to explicit partitions, it is possible to formally derive an insurance-

market structure to provide a micro-foundation for the approximated model. This uses a specific insurance-market
structure to allow solely for insurance contracts on the truncated history. This construction is presented in the
Technical Appendix, as we focus here on a more general representation of the projection method.
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growing exponentially with N –, including some of very small size, whose contribution to the

global dynamics is limited. For this reason, although the theory is simple in this case, we present

another construction that relies on implicit partitions.

3.1.2 Implicit partitions

An alternative (and more abstract) definition of the partitions uses steady-state properties of

state variables, such as the wealth distribution.6 Implicit partitions generalize the concept of

explicit partitions and enable us to follow a smaller number of bins. The basic idea of implicit

partitions is to consider a partition of the steady-state wealth distribution and to gather in the

same bin all of the agents whose idiosyncratic history yields a steady-state wealth belonging to

the same wealth bin. Importantly, implicit partitions proceed in the space of histories and not

in the space of wealth.

More formally, the construction of implicit partitions relies on the steady-state equilibrium,

or equivalently on the equilibrium in the absence of aggregate shocks (i.e., Zt = 1). Huggett

(1993), building on Hopenhayn and Prescott (1992), has shown that this equilibrium is char-

acterized by an invariant distribution, depending on the beginning-of-period wealth and the

current idiosyncratic state. We use these two elements to define our implicit partition of id-

iosyncratic histories, based on a partition of the wealth space [−ā,+∞). The finite wealth

partition, denoted by B, is a finite collection of wealth bins (b)b∈B , such that:

[−ā,+∞) = ∪b∈Bb, and b ∩ b′ = ∅ for all b 6= b′.

At any date t, the beginning-of-period wealth ait−1 of an agent i can be seen as a function of the id-

iosyncratic history up to date t, st−1. Formally, we have ait−1 = a(st−1), where a : st−1 7→ a(st−1)

defines a mapping between idiosyncratic histories and beginning-of-period wealth. Importantly,

this mapping is well defined and one idiosyncratic history st−1 corresponds to a unique beginning-

of-period wealth a(st−1) and therefore to a unique wealth bin b, which is the sole element of B,

such that a(st−1) ∈ b.

The partition H of idiosyncratic histories will furthermore be parametrized by the current

idiosyncratic state s and the wealth bin b. Loosely speaking, an idiosyncratic history st at date

t will belong to a given history bin characterized by the idiosyncratic state s and the wealth

bin b if: (i) the date-t idiosyncratic state is st = s and (ii) st−1, the beginning-of-period wealth
6Other methods, such as Reiter (2009), use the steady-state distribution of wealth. We first derive the full

theory and then compare the differences between the two methods in Section 4.3.
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associated with the history up to date t− 1, belongs to wealth bucket b: a(st−1) ∈ b. Formally,

the wealth partition family is denoted by (Bs)s∈S and counts CardS elements. The partition Bs
will correspond to histories whose current state is s. The partition H of idiosyncratic histories

will be denoted as H = (h(s,bs))(s,bs)∈
⋃
s′∈S{(s

′,Bs′ )}
. We use the subscript s in bs to underline the

dependence of the wealth partition in s. For any date t ≥ 0, for any idiosyncratic state s ∈ S,

and any wealth bin bs ∈ Bs, we have:

st = (st−1, st) ∈ h(s,bs) ⇔ st = s and a(st−1) ∈ bs. (17)

Since the idiosyncratic histories of a given bin h(s,bs) are only defined through relationship (17),

the partition H will be said to be implicit. As we will see later, relationship (17) is crucial for

understanding that our construction is based on the partition of idiosyncratic histories – and

not of wealth – but we do not actually need to invert it in our computational solution to identify

actual idiosyncratic histories.

Note that two histories with two different current idiosyncratic states will belong to two

different bins. As a consequence, we can unambiguously assign to any given history h ∈ H, a

unique current individual state sh = (yh, eh), where the current productivity level is denoted by

yh and the current employment status by eh. Using this notation, we can express the transition

probability from h̃(s̃,bs̃) to h(s,bs) at date t as follows:

ΠS
h̃(s̃,bs̃)h(s,bs),t

= Πyh̃yh
Πeh̃eh,t

Π̃S
h̃h,t

, (18)

The quantity Πyh̃yh
Πeh̃eh,t

corresponds to the transition probability at t of moving from the

idiosyncratic state s̃ = (yh̃, eh̃) to s = (yh, yh). The quantity Π̃S
h̃h,t

corresponds to the fraction of

agents switching from h̃ to h and reflects the heterogeneity in transition probabilities. It is equal

to 1 in the absence of heterogeneity within bin h̃. But in general, bin h̃ can contain histories

st1 6= st2, which have different transition probabilities from bin h. Since bins are not explicitly

known, the quantity Π̃S
h̃h,t

has no straightforward analytical expression – except in particular

cases. We provide further insights on the probabilities ΠS
h̃(s̃,bs̃)h(s,bs),t

in the example below.

Comparing the transition probabilities for explicit partitions in (16) and for implicit parti-

tions in (18) reveals that the expressions are very close to each other except for the term Π̃S
h̃h,t

,

which only appears for implicit partitions. An explicit partition can indeed be seen as a partic-

ular implicit partition in which, by construction, all histories of a given history bin h have the

same transition probabilities. In other words, there is no heterogeneity in transition probabilities
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within history bins. In equation (18), the term Π̃S
h̃h,t

should therefore be equal to either 1 or 0

and we fall back to expression (16) for explicit partitions. This is, for instance, the case in the

explicit partition example provided in Section 3.1.1.

Example of an implicit partition. Assume that agents face an employment risk only, such

that there are only two possible idiosyncratic states: employed (e) or unemployed (u).7 For

the sake of simplicity, we assume throughout this example that job transition probabilities

are constant. The partition Be for currently employed agents is assumed to have only one

element containing all histories: Be = {[−a,∞)}. The partition for unemployed agents contains

three elements and is denoted by Bu = {b1,u, b2,u, b3,u}. In this simple example, we assume

that when using these two wealth partitions and relationship (17), we obtain a partition of

idiosyncratic histories with 4 bins, which we denote by {he, (hi,u)i=1,...,3} and which has the

following characteristics. First, all employed agents end up in the same history bin he because

of the particular partition Be. The element he will simply be denoted as {e}, where we use the

same notation as for explicit partitions. Second, for unemployed agents, there are three history

bins, which are denoted by h1,u = {e, e, u}, h2,u = {u, e, u}, and h3,u = {u, u} – again with

the same notation. We further assume that only agents in history bin h3,u = {uu} – who were

unemployed for the two last periods – are credit-constrained. We therefore obtain a partition

H = {he, hu,1, hu,2, hu,3} and a set of credit-constrained histories C = {hu,3}. Using idiosyncratic

transition probabilities, we can compute transition probabilities
(
ΠS
hh′

)
h,h′∈H

between history

bins. These probabilities are constant because job transition probabilities are constant. For

instance, the transition probability between bins he and h1,u is a transition between states e

and u for agents with the history {e, e} for the two last periods. In other words, of the agents

in history bin he = {e}, only those agents who were also employed before can transit to h1,u,

while those who were unemployed cannot transit to h1,u and can only possibly transit to h2,u.

Formally, the constant transition probability Πheh1,u can be expressed as: ΠS
heh1,u

= Πeu
See
Se

,

where See
Se

is the (constant) share of agents having history ee among agents in he. This can

further be simplified into ΠS
heh1,u

= ΠeuΠee since See
Se

= Πee and Π̃heh1,u = Πee We can similarly

express other transition probabilities.

In this simple example featuring implicit partitions, we can explicitly derive the within-bin

transition probabilities. However, in actual models, these time-varying probabilities cannot be
7This projection theory can be seen as a generalization of previous work such as Challe, LeGrand, and Ragot

(2013) or Challe, Matheron, Ragot, and Rubio-Ramirez (2017).
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analytically characterized because the composition of history bins is not explicitly known. The

construction of the approximated model below will deal with this difficulty.

3.2 Projection of the model

We now consider a partition H containing a finite set of history bins h ∈ H. We explain how

to project our economy onto this partition, which can be either implicit or explicit. Indeed, as

explained before, explicit partitions can be seen as a particular case of implicit partitions. We

first introduce general concepts of projection before applying the methodology to our model in

Section 3.3.

3.2.1 Projecting variables: The basics

The first step of the projection consists in examining each variable of interest (such as consump-

tion, asset holdings, labor supply, etc.) in order to determine its value for each history bin h in

the partition H. First, the size of a bin h ∈ H at date t corresponds to the measure of agents

with an idiosyncratic history st belonging to bin h. Recall that the measure of idiosyncratic

histories is denoted by µt. The population size, denoted by Sh,t, can thus formally be defined

as: Sh,t =
∑
st∈h µt(st). As H is a partition of idiosyncratic histories, any agent in a bin h ∈ H

in period t was in a bin h̃ ∈ H in the previous period t − 1. Since the transition probability

between h̃ and h is denoted by ΠS
h̃h,t

and defined in equation (18), the evolution of history bin

sizes follows a recursive definition that can be written as:8

Sh,t =
∑
h̃∈H

ΠS
h̃h,t−1Sh̃,t−1. (19)

Consider now the projection of a generic individual choice variable, which can be savings or

consumption, for instance. In general, at date t, this variable can depend on the histories of

idiosyncratic risk, st, and of aggregate risk, zt. We will denote it by Xt
(
st, zt

)
. The projection

on the partition H consists in averaging the variable Xt over agents belonging to the same bin

h. This value, denoted by Xh,t(zt) or simply Xh,t for a bin h ∈ H, is formally defined as:

Xh,t = Ah,t[Xt] ≡
∑
st∈HXt

(
st, zt

)
µt(st)

Sh,t
. (20)

We will denote by Ah,t[Xt] the projection of a variable X onto the history bin h at date t.
8A formal derivation of this projection formula – as well as all projection formulas used below – can be found

in Section A of the Appendix.
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3.2.2 Projecting variables: Other mechanisms

Equations (19) and (20) provide the basic mechanisms for projecting the model onto the partition

H. However, other operations are also useful, although slightly more subtle.

First, we examine the projection of a transformed variable. Since the projection opera-

tions rely on the linear operator Ah,t, the projection of a transformed variable generally differs

from the transformation of the projected variable. In other words, Ah,t[f(Xt)] generally differs

from f(Ah,t[Xt]), except in particular cases – such as f being affine or Xt having a degenerate

distribution. Because of this non-linearity, we will define the projection as:

Ah,t[f(Xt)] = ξfh,tf(Xh,t), (21)

where the quantity ξfh,t embeds the non-linearity correction of f and the heterogeneity in X

within the bin h. This correction is time-varying (because the distribution within bin h is in

general time-varying) and depends on the function f and on the variable X. The parameter ξfh,t
will be a useful tool in our numerical algorithm.

Second, we are interested in the projection of a past variable Xt−1 onto a history h at date t.

This is, for instance, useful for the projection of the beginning-of-period wealth of agents in the

budget constraint. This projection is the average of a variable Xt−1 over agents belonging to bin

h in period t, but possibly to another bin h̃ in period t− 1. These transitions have to be taken

into account in the projection. More subtly, the transition probabilities for X generally differ

from the transition probabilities (ΠS
h̃h,t

) between the history bins defined in equation (18). The

reason is that two agents with respective histories s1,t 6= s2,t, belonging to the same bin h̃ at date

t, can face different probabilities for transitioning to bin h and, at the same time, can be endowed

with different values for X. The combination of these two sources of heterogeneity implies that

averaging within bin h̃ for the flow of the variable X generates transition probabilities for X

that can differ from those for agents’ flows (ΠS in our notation). We provide an illustrative

example below. The projection Ah,t[Xt−1] at date t on history bin h of the lagged variable Xt−1

can be written as:

Ah,t[Xt−1] =
∑
h̃∈HΠX

h̃h,t
Sh̃,t−1Xh̃,t−1

Sh,t
, (22)

where (ΠX
h̃h,t

)h̃,h∈(H×H) is a probability transition matrix, for which we have ΠX
h̃h,t
∈ [0, 1] and∑

h∈HΠX
h̃h,t

= 1. An exact expression of the matrix (ΠX
h̃h,t

) can be found in Appendix A. In

general, this matrix depends on the variable X under consideration. It is noteworthy that in

the absence of heterogeneity either for X within bin h̃ or for agents’ transition probabilities, the
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transition probability ΠX
h̃h,t

becomes equal to ΠS
h̃h,t

– the transition probability (18) of agents

between bins. This is, for instance, the case for explicit partitions.

Example. This example continues the one presented in Section 3.1.2 for implicit partitions.

We aim to compute the projection Ah1,u,t[at−1] of wealth at−1 on the history bin h1,u = {e, e, u} at

t. All agents in bin h1,u come from bin he = {e}, and the transition probability between both bins

– which we already computed – is Πheh1,u = ΠeuΠee. For wealth projection, it is useful to observe

that bin he can be partitioned into two sub-bins, hee = {ee} and hue = {ue}, depending on the

employment status in the previous period. Only agents from the sub-bin hee = {ee} ⊂ he, i.e.,

those who have been employed for two consecutive periods, will transition to h1,u with probability

Πee, while agents of hue have a zero probability of transitioning to h1,u. Using the definitions

of conditional probabilities and of these two sub-bins, we therefore note that the projection

Ah1,u,t[at−1] can be expressed as: Ah1,u,t[at−1] = 1
Sh1,u,t

∑
st−1∈hee Xt−1

(
st−1)Πeuµt−1(st−1). We

can simplify this expression further using equation (20):

Ah1,u,t[at−1] = Πeu
See
Sh1,u

aee,t−1 = ΠeeΠeu
Se
Sh1,u

aee,t−1, (23)

where the quantity aee,t−1 generally differs from ahe,t−1. We in fact have ahe,t−1 = See
Se
aee,t−1 +

Sue
Se
aue,t−1, which coincides with aee,t−1 only in the special case where aee,t−1 = aue,t−1, i.e.,

in the absence of within-bin heterogeneity. From equations (22) and (23), we therefore define

Πa
heh1,u,t−1 = ΠeeΠeu

aee,t−1
ae,t−1

, which in general differs from Πheh1,u(= ΠeeΠeu), unless there is no

heterogeneity in bin he.

To conclude this section on projection mechanisms, we observe that projecting expectations

also implies the introduction of corrective elements. We will describe this procedure when dealing

with the Euler equation in Section 3.3.

3.3 The projected model

We consider the economic model presented in Section 2 and a finite-size partition H. The

model is characterized by the following set of equations: (i) individual budget constraints, (ii)

Euler equations, (iii) market clearing conditions, and (iv) the balance of the unemployment

scheme. We will project the model and obtain the counterparts of these different equations for

the partition H.
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Budget constraints. The individual budget constraint (7) is relatively straightforward to

project and proceeds from the basic projection mechanism (20) and from the projection (22)

for a lagged variable. Using proper notation, the budget constraint for any bin h ∈ H can be

expressed as:

ch,t + ah,t ≤ (1 + rt)
∑
h̃∈H

Πa
h̃h,t

Sh̃,t−1
Sh,t

ah̃,t−1 + ((1− τt)1eh=e + φt1eh=u) lh,tyhwt. (24)

The interpretation of the projected budget constraint (24) is immediate: resources, comprising

labor income and saving payoffs, are used to consume and save. The only subtlety relates to the

projection of past savings, as already discussed.

Market clearing conditions. Projecting market clearing conditions is also relatively straight-

forward, as these conditions are linear. Equations (12)–(14), which state the market clearing

conditions for capital, goods, and labor respectively, become:

Kt =
∑
h∈H

Sh,tah,t, (25)

∑
h∈H

Sh,tch,t +Kt = F (Kt−1, Lt) +Kt−1, (26)

Lt =
∑
h∈H

Sh,tyhlh,t. (27)

Again, the interpretation of partition-clearing conditions (25)–(27) is relatively direct: aggregate

variables are equal to the sum of bin variables, weighted by bin size.

Unemployment insurance. Using individual labor Euler conditions (10), the UI budget

constraint (5) becomes: φt
´
i∈Ut

(
yit
)1+ϕ

`(di) = τt
´
i∈I\Ut

(
yit
)1+ϕ

`(di). We observe that the

budget balance only depends on the current idiosyncratic state. This can therefore be simplified

into φt
∑
y∈Y Su,tSyy

1+ϕ = τt
∑
y∈Y Se,tSyy

1+ϕ, or:

φtSu,t = τtSe,t, (28)

which is independent of the partition in this economy.

First-order conditions. The first-order condition (10) for labor is straightforward to project,

as it is linear. It implies that the labor supply for a bin h can be expressed as:

lh,t = χϕ(1− τt)ϕwϕt y
ϕ
h1eh=e. (29)
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Only employed agents supply labor and their effort depends solely on the labor tax (negatively)

and on bin productivity (positively).

The projection of the Euler equation for consumption is more involved for two reasons:

(i) the non-linearity of marginal utilities and (ii) the conditional expectation operator. The

consumption Euler equation for agents can be expressed as:

ξuh,tUc(ch,t, lh,t)− νh,t = βEt

(1 + rt+1)
∑
h̃∈H

Πu
hh̃,t+1ξ

u
h̃,t+1Uc(ch̃,t+1, lh̃,,t+1)

 , (30)

where νh,t = 0 if agents in h are not credit-constrained. First, the quantities ξuh,t in (30)

correct for the nonlinearity of Uc and are defined in (21). Second, the expectation operator Et [·]

should be understood with respect to aggregate risk only, since individual risks are handled

explicitly in a developed summation. The terms (Πu
hh̃,t

) are nonnegative and they aggregate

future transitions across history bins. As for the projection of lagged variables, the term Πu
hh̃,t+1

reduces to Πu
hh̃,t+1 = ΠS

hh̃,t+1 in the absence of bin heterogeneity, which greatly simplifies the

projected Euler equation (30).

4 The approximated model

The projected model in Section 3 is an exact representation of the initial model, except that

it follows history bins rather than individual agents. Time-varying, within-bin heterogeneity is

captured by correcting parameters, such as Πa
hh̃,t

, Πu
hh̃,t

, and ξuh,t. These correcting coefficients

are further characterized in the approximated model below.

To track the dynamics of these coefficients in the presence of aggregate shocks, we need to

solve the full model to follow the time-varying heterogeneity within each bin. The approximated

model is based on the assumption that the value of these parameters is not time-varying and is

equal to their steady-state values. As a result, although we consider heterogeneity in each bin,

this heterogeneity is not considered to be time-varying. We thus solve for the dynamics of an

approximate model where the correcting parameters (Πa
hh̃,t

, Πu
hh̃,t

, ξuh,t) are introduced to match

both steady-state transitions and distributions.

4.1 Steady-state economy

The equations characterizing the choices at the bin level are: the Euler equations for consumption

and labor (29) and (30), the budget constraint (24), and the dynamics of bin sizes (19). At the
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steady-state, dropping the subscript t, these equations become respectively, for all h ∈ H:

ξuhUc (ch, lh)− νh = β(1 + r)
∑
h̃∈H

Πu
hh̃
ξu
h̃
Uc(ch̃, lh̃), (31)

lh = χϕ(1− τ)ϕwϕyϕh1eh=e, (32)

ch + ah ≤ (1 + r)
∑
h̃∈H

Πa
hh̃

Sh̃
Sh
ah̃ + ((1− τ)1eh=e + φ1eh=u) lhyhw, (33)

Sh =
∑
h̃∈H

ΠS
hh̃
Sh̃. (34)

The steady-state equilibrium is further characterized by the following aggregate equations: mar-

ket clearing (25)–(27), UI scheme budget balance (28), and factor prices (4). The important

result, stated in the following proposition, is that all individual variables can be identified at

the steady-state equilibrium.

Proposition 1 The variables (ξuh ,Πu
hh̃
,Πa

h̃h
,ΠS

h̃h
)h̃,h∈H can be identified and computed at the

steady-state.

The proof of this proposition is straightforward. As in the steady-state, we can characterize

the stationary wealth distribution of the model, as for any Bewley model. From this stationary

distribution, we can integrate policy rules and transition probabilities to determine all individual

variables. The individual variables can then be combined to compute the quantities in terms of

history bins. In particular, it is possible to compute the transition elements (Πu
hh̃
,Πa

h̃h
,ΠS

h̃h
)h̃,h∈H

– which matter for computing bin sizes, projected budget constraints, and projected Euler

constraints – as well as the corrective factor (ξuh)h∈H. In addition, we can also identify the set

of credit-constrained bins, C ⊂ H.

We conclude this section by a convergence result of allocations when the partitionH becomes

increasingly fine.

Proposition 2 (Convergence of allocations) Let (Hn)n≥0 be a sequence of partitions, such

that: (i) Hn+1 is a refinement of Hn for all n and (ii) the size of partition elements converges

to zero. For any n, we denote by (chn,t, ahn,t, lhn,t)hn the allocations – consumption, savings,

and labor supply – associated with partition Hn. We have the following convergence result for

allocations:

(chn,t, ahn,t, lhn,t)hn −→n (ct(s∞), at(s∞), lt(s∞))s∞∈S∞ ,

where (ct(s∞), at(s∞), lt(s∞))s∞∈S∞ are the allocations of the Bewley model.
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This proposition states that the bin allocations converge to the Bewley allocation when the

partition becomes increasingly fine. Proposition 2 is general and valid for any type of partition.

The proof can be found in Section B of the Appendix. The intuition for the proof is as follows.

The projected variable Xh,t, defined in equation (20), is an average of the value X over a bin

h. When the size of this bin converges to zero, the average converges to the “derivative” of

the integral, which is in this case the value of X for a unique history. This is, in a sense, a

generalized version of the fundamental theorem of calculus.

It is noteworthy that aggregate quantities (capital, total labor supply, output) and prices are

by construction equal to their counterparts in the Bewley economy for any partition. This still

holds at the limit. So, a consequence of Proposition 2 is that, at the steady–state, the projected

economy converges to the Bewley economy.

As a result of Proposition 2, we can state the following corollary, stating that all the correcting

coefficients vanish when the partition H becomes increasingly fine.

Corollary 1 (Convergence of correcting coefficients) Let (Hn)n≥0 be a sequence of par-

titions as in Proposition 2. For any n, we denote by (Πa
hnh̃n,t

,Πu
hnh̃n,t

, ξuhn,t)hn,h̃n the correcting

coefficients – probabilities and concavity corrections – associated with partition Hn. Similarly,

(ΠS
hnh̃n,t

)hn,h̃n are the transition probabilities for agents’ flows. We have the following conver-

gence results:

ξuhn,t −→n 1, Πa
hnh̃n,t

−ΠS
hnh̃n,t

−→n 0, Πu
hnh̃n,t

−ΠS
hnh̃n,t

−→n 0.

In words, the difference between the probabilities for agents flows and other correcting prob-

abilities converges to zero. Furthermore, the concavity correction coefficients (ξuhn,t) vanish.

This means that the factors of the projected model introduce a correction that diminishes when

the partition becomes increasingly fine. We will illustrate this convergence numerically in our

quantitative exercise of Section 6.

4.2 The dynamics of the approximated model

We now formally present the structure of the approximated model. Following the notation of

equation (18), the exact transition probabilities can be written as (for X = a, u, S):

ΠX
h̃h,t

= Π̃X
h̃h,t

Πyh̃yh
Πeh̃eh,t

, (35)
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where the transition probabilities for productivity, Πyh̃yh
are not time-varying in our economy.

Our main assumptions regarding the projected model are stated below.

Assumption A 1. The quantities
(
ξuh , Π̃u

h̃,h
, Π̃a

h̃,h
, Π̃S

h̃,h

)
h̃,h∈H

remain constant and equal to

their steady-state values.

2. for any h ∈ H, ah,t = −ā for all t if and only if ah = −ā.

Assumption A enables us to use our bin-history representation to determine the model with

aggregate shocks. As already explained, the first item means that the model still features bin

heterogeneity, but that this heterogeneity is not time-varying. However, transition probabili-

ties (Πu
h̃h,t

,Πa
h̃h,t

,ΠS
h̃h,t

)h̃,h∈H, defined as in equation (35), can be time-varying in the presence

of aggregate shocks because job market transition probabilities are also time-varying. In the

remainder of the paper, the transitions (Πu
h̃h,t

,Πa
h̃h,t

,Πh̃h,t)h̃,h∈H should be understood as being

time-varying, and constructed using Assumption A.

The second item assumes that if a bin h ∈ H is credit-constrained at the steady-state, then it

remains credit constrained in the dynamic version of the model. Symmetrically, unconstrained

bins at the steady-state are also unconstrained in the dynamic version. This assumption is con-

sistent with the use of a perturbation method, which relies on small aggregate shocks. However,

in the general case, the number of credit-constrained households can be time-varying, since the

size of the bin can be time-varying.9 C ⊂ H denotes the set of credit-constrained bins.

We can now formally present our model in the presence of aggregate shocks.

Definition 2 (Model with aggregate shocks) The approximated model is defined by the fol-

lowing set of equations:10

∀h ∈ H \ C, ξuhUc(ch,t, lh,t)− βE(1 + rt+1)
∑
h̃∈H

Πu
hh̃,t+1ξ

u
h̃
Uc(ch̃,t+1, lh̃,t+1) = 0, (36)

∀h ∈ C, ah,t = −ā, (37)

∀h ∈ H, lh,t = χϕ(1− τt)ϕwϕt y
ϕ
h1eh=e, (38)

∀h ∈ H, ch,t + ah,t ≤ (1 + rt)
∑
h̃∈H

Πa
h̃h,t

Sh̃,t
Sh,t

ah̃,t−1 (39)

+ ((1− τt)1eh=e + φt1eh=u) lh,e,tyhwt,
9It may be possible to relax the second point of Assumption A for modeling large aggregate shocks by using

bin-specific penalty functions. We leave this development for future work.
10In equation (39) below, lh,e,t is the labor supply of an employed agent with productivity yh, which determines

the UI benefits of unemployed agents of bin h.
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together with equations (4) for factor prices, (25)–(27) for market clearing conditions, and (28)

for UI scheme budget balance.

Using Definition 2, we can easily simulate the model using standard perturbation methods.

Although our goal is to solve for optimal policies with aggregate shocks, an additional advantage

of the projection theory is that it improves current simulation techniques. We discuss quantita-

tive comparisons in Section 6. We begin by clarifying how our history-based projection method

compares with the method of Reiter (2009).

4.3 Following wealth or histories? Comparison with Reiter’s representation

Reiter (2009) develops a method that projects the wealth distribution on a finite set of bins.

As with our method, Reiter’s algorithm begins by defining bins of wealth from the steady-state

distribution. Since the boundaries of the wealth bins are kept constant in the dynamic version

and the within-bin wealth distribution is assumed to be uniform, the distribution of wealth is

assumed to be a histogram. The transition of agents across bins is computed using agents’ saving

decisions averaged over each bin. We identify three main differences between Reiter’s algorithm

and the one examined here.

The first difference is that we construct an explicit approximated model, using budget con-

straints and Euler equations. As a consequence, we are able to define a consistent Ramsey

program for the approximated model with aggregate shocks, as will be performed in Section 5

below. The second difference concerns the simulations: we use more steady-state information

and, in particular, we account for the within-bin distribution to construct our model. This

improves accuracy when a small number of bins are used.11

The third difference relates to the model representation. Reiter’s approach is formulated in

terms of wealth bins, while our method tracks history bins. To better understand the difference

between the “following wealth” and “following histories” approaches, we consider a special case,

where TFP is affected by aggregate shocks, but where labor market transitions are constant. In

Reiter (2009)’s representation, the measure of agents within each wealth bin changes over time

(as the wealth distribution evolves), even though the per capita wealth within each bin remains

the same (by construction). In our representation, because of constant transition probabilities

across employment statuses, the share of agents within each history bin is constant. Indeed, from
11Our construction can be thought of as an efficient way of reproducing the wealth distribution on a finite-

dimensional state space. See Algan, Allais, and Den Hann (2010) and Winberry (2018) for a different strategy
for approximating the distribution of wealth.
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equations (19) and (35), we have Sh =
∑
h̃∈H Π̃S

h̃h
ΠS
eh̃eh

Sh̃, which is constant. The per capita

wealth in a given history bin is time-varying, however, because TFP affects consumption and

saving choices. To summarize, in Reiter (2009), for any bin, the per capita wealth is constant,

while the size is time-varying. Conversely, in our approach, the size of history bins is constant,

while the per capita wealth is time-varying.

5 Ramsey program

The previous construction provides a solid foundation for solving Ramsey policies with aggregate

shocks. First, computing Ramsey policies in the general case is a very difficult task. It is

necessary to introduce additional state variables, such as Lagrange multipliers, for the relevant

individual constraints. The Ramsey problem thus involves a joint distribution of two individual

state variables – namely, in our case, beginning-of-period wealth and Lagrange multipliers.

Characterizing this joint distribution is particularly difficult and, to the best of our knowledge,

there is no general method for such a characterization.12 In our approach, the state-space has

finite support, which allows for the resolution of the Ramsey program – using the tools of Marcet

and Marimon (2011), for instance. An additional benefit is that it is possible to derive analytical

expressions for first-order conditions of the Ramsey program. This eases the interpretation of

results and the comparison with other approaches.

5.1 Formulation of the Ramsey program

The Ramsey problem involves determining the unemployment insurance policy (which consists

here of the unemployment benefit rate φt and the labor tax rate τt) that corresponds to the

“best” competitive equilibrium, according to a utilitarian welfare criterion. To be consistent

with the projection, aggregate welfare is measured as
∑∞
t=0 β

t∑
h∈H Sh,tξ

U
h,tU(ch,t, lh,t), where

ξUh,t are correcting coefficients similar to ξuh,t defined in equation (21). These coefficients are

related to the non-linearity of the utility function U and are designed to capture the steady-

state heterogeneity in history bins. Regarding the coefficients ξUh,t, we make an assumption

similar to Assumption A and it is assumed that the coefficients (ξUh,t)h∈H remain constant and

equal to their steady-state values, denoted by (ξUh )h∈H and computed using the steady-state
12Açikgöz (2015) proposes an algorithm in an economy without aggregate shocks to approximate the joint dis-

tribution. This algorithm is used in Açikgöz, Hagedorn, Holter, and Wang (2018). It relies on certain assumptions
about functional forms to find a fixed point.
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wealth distribution of the Bewley model. The Ramsey problem can be written as follows:

max
((ah,t,ch,t,lh,t)h∈H,φt,τt)t≥0

E0

 ∞∑
t=0

βt
∑
h∈H

Sh,tξ
U
h U(ch,t, lh,t)

 , (40)

subject to: (i) the budget constraints (24), (ii) the labor Euler equations (29), (iii) the con-

sumption Euler equations (30), (iv) the UI scheme budget balance (28), (v) the market clearing

constraints (25) and (27), and finally (vi) the factor prices wt and rt (4). Note that we also have

to take into account the constraints driving the evolution of the bin sizes (19). However, since

the evolution is independent of the planner’s choices, it has no impact on the Ramsey policies.

A reformulation of the Ramsey problem. We simplify the formulation of the Ramsey

problem exposed in equation (40). We first denote by βtSh,tλh,t the Lagrange multiplier of

the Euler equation for history bin h at date t, (36). These Lagrange multipliers are key to

understanding the planner’s program. If agents’ private incentives to save in bins h at date t are

socially optimal, then their Euler equation is not a constraint and the Lagrange multiplier is 0:

λh,t = 0. Then, depending on how the planner perceives the distortions of saving incentives (i.e.,

whether agents save too much or too little from the planner’s perspective), these coefficients can

be either positive or negative.13

We also define for all h ∈ H:

Λh,t ≡
∑
h̃∈H Sh̃,tΠS

h̃h,t
λh̃,t−1

Sh,t
, (41)

which, for agents in history bin h, can be interpreted as the average of their previous period

Lagrange multipliers for the Euler equation. Finally, note that λh,t = 0 if ah,t = −a: the

multiplier λh,t is null when the credit constraint is binding. The product λh,tνh,t (for any t and

h) is thus always null. This property is key for simplifying the expressions. The following lemma

summarizes our simplified Ramsey problem.

13We provide a simple example in the Technical Appendix to clarify the relationship between saving incentives
and the sign of the Lagrange multiplier for Euler equations.
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Lemma 1 (Simplified Ramsey problem) The Ramsey problem can be simplified into:

max
((ah,t,ch,t,lh,t)h∈H,φt,τt)t≥0

E0

∞∑
t=0

βt
∑
h∈H

Sh,t
(
ξUh U(ch,t, lh,t) (42)

− (λh,t − (1 + rt)Λh,t) ξuhUc(ch,t, lh,t)
)

s.t. λh,t = 0 if ah,t = −a, (43)

and subject to equations (24), (25), (27), (28), (29), and (4).

The contribution of the Lemma is to show that the factorization of the Lagrangian can be

easily performed with partitions in the space of histories, as shown by Marcet and Marimon

(2011) for agents. This considerably simplifies the derivation of first-order conditions of the

Ramsey program. The proof, provided in the Technical Appendix, is based on a re-writing of

the Lagrangian to introduce Lagrange multipliers into the objective.

5.2 Ramsey conditions and economic interpretation

Using proper substitution, the program (42)–(43) can be written as a maximization problem

with only two sets of choice variables: the labor tax τt and saving choices (ah,t)h∈H,t≥0. The

current section derives the planner’s first-order conditions for any general partition and discusses

the economic trade-offs determining the time-varying replacement rate.

To ease the economic interpretation of the first-order conditions, we define the following

useful aggregates:

Ψh,t = ξUh Uc,h,t − (λh,t − (1 + rt)Λh,t) ξuhUcc,h,t, (44)

where Uc,h,t = Uc(ch,t, lh,t) is the consumption marginal utility and Ucc,h,t = Ucc(ch,t, lh,t) is

the derivative of the marginal utility. The quantity Ψh,t will be called the marginal social

valuation of liquidity for agents in history bin h, because it is the marginal gain for the planner

of transferring resources in bin h at date t. If an agent receives one additional unit of goods

today, this additional unit will have a value proportional to Uc,h,t. This value only accounts for

private valuation, but should also reflect, for the planner, the effect on the saving incentives,

i.e., on the Euler equations. This additional unit therefore affects the agent’s saving incentive

from period t − 1 to period t and from period t to period t + 1. This effect is captured by the

second term, which is proportional to Ucc,h,t.

The saving decision in bin h at date t affects the individual welfare of all agents due to

general equilibrium effects on capital and prices. The first-order condition of the Ramsey pro-
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gram related to saving choices summarizes all these effects. It can be written as follows for

unconstrained bins h ∈ H \ C:

Ψh,t = β
∑
h̃∈H

Et
[
(1 + rt+1)Πa

hh̃,t
Ψh̃,t+1

]
︸ ︷︷ ︸

liquidity smoothing

+ β
α (1− α)
1 + αϕ

1
Lt+1

(
Kt

Lt+1

)α−1
(45)

×

Et
(1− τt+1)

∑
h̃

Ψh̃,t+1Sh̃,t+1lh̃,t+1ỹ1eh̃=e


︸ ︷︷ ︸

net wage effect for employed

+ (1 + ϕ) Et

φt+1
∑
h̃

Ψh̃,t+1Sh̃,t+1lh̃,e,t+1ỹ1eh̃=u


︸ ︷︷ ︸

wage effect on unemployment benefits for unemployed

−
(
Kt

Lt+1

)−1 ∑
h̃∈H

Et
[
Sh̃,t+1

(
Λh̃,t+1ξ

u
h̃
Uc,h̃,t+1 + Ψh̃,t+1ãh̃,t+1

)]
︸ ︷︷ ︸

interest rate effect on smoothing and wealth

 ,

where ãh,t =
∑
h̃∈HΠa

h̃h,t

Sh̃,t−1
Sh,t

ah̃,t−1 is the beginning-of-period wealth in bin h at date t14.

Equation (45) features the first-order condition on the liquidity allocation (i.e., saving choices)

for unconstrained bins. The equation, though apparently complicated, has a straightforward in-

terpretation. Four effects are at play. The first one is a direct effect that measures the expected

future value of liquidity tomorrow. In other words, this component states that liquidity value

should be smoothed over time. This first part is very similar to a standard Euler equation.

We refer to this first term as “liquidity smoothing”. The three other components alter the pure

smoothing effect and reflect the fact that the planner also takes into account the consequences

of liquidity allocation on prices. More precisely, the second and third components correspond to

the marginal effect of additional saving on the wage rate. This affects employed agents (second

component) and unemployed (third component) agents, because UI benefits are proportional to

the labor income of employed agents with the same productivity. Finally, the fourth and last

component reflects the distortions of the interest rate on smoothing incentives and on wealth

accumulation.
14Compared to Marcet and Marimon (2011) or Chien, Cole, and Lustig (2011), we don’t use cumulative Lagrange

multipliers to analyze the dynamics. Instead, we use the period multipliers to derive first-order conditions of the
planner. Indeed, these conditions are easier the interpret with period multipliers and the simulation of the model
relies on a smaller number of variables. See these two references for a discussion of the existence of these multipliers
in such economies.
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The second first-order condition, relating to the labor tax, can be written as follows:

α

(1− τt)Kt−1

∑
h̃∈H

Sh̃,t

(
Λh̃,tξ

u
h̃
Uc,h̃,t + Ψh̃,tãh̃,t

)
︸ ︷︷ ︸

effect on prices, smoothing and redistribution

+ 1
ϕ

∑
h̃∈H

Sh̃,tΨh̃,t

lh̃,t
Lt
ỹ1eh̃=e︸ ︷︷ ︸

cost of the tax for employed

= (46)

Se,t
Su,t

( 1
ϕ

+ 1− 1− α
1− τt

) ∑
h̃∈H

Sh̃,tΨh̃,t

lh̃,e,t
Lt

ỹ1eh̃=u︸ ︷︷ ︸
gain of unemployment benefits for unemployed

.

Equation (46) determines the optimal labor tax rate by setting the marginal costs of a higher tax

rate equal to the marginal benefits. On the left-hand side of (46), marginal costs comprise two

effects. The first reflects the tax distortion on the interest rate and thus on saving incentives.

The second marginal cost on the left-hand side of (46) reflects the impact of the labor tax

on employed agents, taking into account the negative net effect on the labor supply (inversely

proportional to the Frisch elasticity ϕ). On the right-hand side of equation (46), the marginal

benefit comprises the marginal gain of tax (and UI benefit) for unemployed agents. Finally,

equation (46) embeds, in a compact form, the general equilibrium effect on wages, which are

captured by both the Frisch elasticity of the labor supply ϕ, and the concavity of the production

function α.

5.3 Calibration and simulation of the Ramsey allocation using the approxi-
mated model

It is straightforward to derive the Ramsey conditions to be applied to the approximated model,

as there are a finite number of equations. In this environment, standard perturbation methods

can be used to simulate the model with aggregate shocks. However, an important first step is to

obtain the right steady-state allocation, and thus a consistent approximated model. The general

method is the following:

1. Solve the “true” Bewley model (i.e., without aggregate shocks) for a given UI policy.

2. Construct the projected and approximated model, and derive implied values of the La-

grange multipliers, using (45).

3. Iterate on the UI policy until the optimality condition (46) is satisfied.

This strategy has three advantages. First, the derivation of correcting parameters for the ap-

proximated model is consistent with the true Bewley model at each step. Second, since the
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“true” Bewley model is required to exist at each step of the iteration, the perturbation method

is not used around non-existing, steady-state equilibria.15 A final advantage is that the steady-

state value of Lagrange multipliers can be expressed in closed-form using matrix calculus, as

the state-space has a finite dimension. This provides a very efficient algorithm with which to

compute the steady-state solution of the Ramsey program, as shown in Appendix E.

6 Numerical analysis

We perform two separate numerical exercises. First, in Section 6.1, we solve a simple model

with an exogenous replacement rate to compare our projection method with existing solution

techniques. Second, in Section 6.2, we use the projection method to solve for the optimal

replacement rate in the general model presented above.

6.1 Comparing solution methods: Krusell-Smith, explicit and implicit par-
titions

We perform a similar exercise to den Haan (2010) in order to compare our solution methods

to the Krusell-Smith method (henceforth KS). The economy under consideration features only

unemployment risk, with a constant and exogenous replacement rate, and each employed worker

inelastically supplies one unit of labor. This economy is thus a special case of the economy

presented in the paper.

The period is a quarter. The calibration is standard and based on den Haan (2010). For the

discount factor, the capital share, the depreciation rate, the credit limit, and the replacement

rate, we have (β, α, δ, ā, φ) = (0.99, 0.36, 0.025, 0, 0.1). The economy can be in one of two aggre-

gate states, G (standing for Good) or B (Bad). In the Good aggregate state, the productivity

level is zG = +1% and the unemployment rate is UG = 4%. In the Bad aggregate state, the

productivity level is zB = −1% and the unemployment rate is 10%. The transition probabilities

on the labor market depend on the aggregate state. The transition matrix is given in Table 1.

The probability of transitioning from unemployment in the Bad state (B, 0) to employment in

the Good state (G, 1) is 9.3750%, for instance.

We solve the previous model using the KS algorithm refined by Maliar, Maliar, and Valli

(2010). Their refinement is based on an endogenous grid and on the iteration over the aggregate
15In the general case, it is possible that the set of equilibria is larger in the approximated model than in the

true Bewley one. This procedure ensures that we only select equilibria for the original Bewley model.
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B, 0 B, 1 G, 0 G, 1

B, 0 52.5000 35.0000 3.1250 9.3750

B, 1 3.8889 83.6111 0.2083 12.2917

G, 0 9.3750 3.1250 29.1667 58.3330

G, 1 0.9115 11.5885 2.4306 85.0694

Table 1: Transition probabilities on the labor market (expressed in %).

law of motion of capital stock. Here, we follow their procedure exactly and use 1, 000 grid points

and simulate 10, 000 agents for 10, 000 periods. This type of algorithm is known to provide

accurate results in this simple environment (see den Haan 2010).

Constructing projected models. To simulate the model with history-representation using

either explicit or implicit partitions, we first need to solve the model steady-state. Steady-state

job market transition probabilities can be deduced from Table 1.

As we use the perturbation method when simulating the model with history-representation,

we approximate the discrete aggregate risk process described above with its continuous coun-

terpart. The log of TFP, zt = log (Zt), follows an AR(1) process zt = 0.95zt−1 + εt where (εt)

are iid Gaussian white noises with zero mean and a standard deviation σz = 0.66%. We use the

following process for the unemployment rate and transition probabilities:

Πue,t = 0.5257 + 10.2978zt + 5.9944zt−1, (47)

Su,t = 7%− 3zt. (48)

We obtain this calibration by replicating the first- and second-order moments (including corre-

lations) of the discrete processes in Krusell and Smith (1998).

To construct the projected model, we first solve the Bewley model using value function

iteration to directly obtain policy rules on the relevant grid, which simplifies the projection. We

use an exponential grid with 1, 000 points. We then project the model for both explicit and

implicit partitions. In the first case, we truncate the idiosyncratic histories with N ex = 6, such

that there are 64 bins. For implicit partitions, we use N im = 10, such that there are 20 bins.

These partitions provide satisfactory dynamics results as shown below. The simulations with

aggregate shocks are based on a linear approximation of the model – computed with Dynare

– which is known to generate accurate results (as discussed recently by Boppart, Krusell, and
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Mitman 2018).

Comparing the steady-state distribution of wealth for implicit and explicit partitions

We first report steady-state distributions for the Bewley model and for the projected model on

implicit and explicit partitions, as shown in Table 2.

Decile 1 2 3 4 5 6 7 8 9 10

Bewley model 3.54 9.12 16.61 25.82 36.44 48.01 60.44 73.46 86.73 100

Implicit part. 3.56 9.14 16.63 25.87 36.45 48.05 60.44 73.46 86.73 100

Explicit part. 8.48 18.00 28.10 38.37 48.64 58.91 69.18 79.46 89.73 100

Table 2: Cumulative distribution of wealth by decile for the Bewley model and for the implicit-
partition (N im = 10) and explicit-partition models (N ex = 6).

The implicit-partition model reproduces almost exactly the Bewley model wealth distribu-

tion. This is almost a feature of the construction, as this information is used to calibrate the

model. The explicit partition is less efficient at reproducing the Bewley model wealth distribu-

tion. The reason is the large bin of employed agents for N ex = 6 consecutive periods, which

contains 70% of the population. This is due to the high persistence of the employment state.

6.1.1 Results

We now compare the outcomes of three different algorithms: the KS algorithm, the projection

with implicit partitions, and the projection with explicit partitions. For each of the three

algorithms, we compare the moments generated by simulations of the model for 10, 000 periods

with those implied by theory, in the case of both implicit and explicit partitions. The ability to

compute theoretical moments is an additional positive aspect of our solution technique, which

allows us to quantify sampling errors for endogenous variables.

Table 3 reports first- and second-order moments for three aggregate variables: output (Y ),

consumption (C), and capital (K), and for three labor market quantities: unemployed popula-

tion share Su, job finding rate Πue, and job separation rate Πeu. It also contains the computa-

tional time needed to solve the model with aggregate shocks.16 Economy (1) presents the results

for the KS method, for the simulated economy. Economy (2) presents the theoretical moments
16For economies 3-6, we report the time to perform the projection and the perturbation once the Bewley model

is solved.
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for the same economy for exogenous variables only, as theoretical moments for endogenous vari-

ables cannot be computed. Economies (3) and (4) present the results for the explicit partition,

for simulated and theoretical moments, respectively. Economies (5) and (6) present the same

moments for implicit partition.

Methods Krusell-Smith Explicit (N ex = 6) Implicit
(
N im = 10

)
Economies (1) (2) (3) (4) (5) (6)

Moments (in ) Simul. Theory Simul. Theory Simul. Theory

Y mean 3.4469 - 3.4525 3.4525 3.4525 3.4525

std 0.1184 - 0.1179 0.1175 0.1187 0.1178

C mean 2.5605 - 2.5637 2.5637 2.5637 2.5637

std 0.0459 - 0.0461 0.0482 0.0464 0.0478

K mean 35.4626 - 35.5509 35.5509 35.5509 35.5509

std 0.8788 - 0.8027 0.7967 0.8501 0.8748

L mean 0.9292 0.9300 0.9300 0.9300 0.9300 0.9300

std 0.0300 0.0300 0.0302 0.0300 0.0302 0.0300

Πeu mean 0.0374 0.0372 0.0376 0.0376 0.0376 0.0376

std 0.0129 0.0130 0.0160 0.0162 0.0160 0.0162

Πue mean 0.5257 0.5292 0.5000 0.5000 0.5000 0.5000

std 0.1529 0.1533 0.1548 0.1533 0.1548 0.1533

Speed (in s.) 705 - 3.3 2.5 1.7 1.4

Table 3: Comparing moments with different resolution techniques.

The results are very similar for both first-order and second-order moments. For second-order

moments, the sampling error is small but not negligible. For instance, the sampling error for the

standard deviation of output (line Y , std) is 9.10−4 for the implicit-partition method (absolute

difference between Economies 5 and 6). This difference is greater than the difference between

the KS and the implicit-partition method (absolute difference between Economies 1 and 5 for

the line Y , std equals 3.10−4). The implicit-partition solution is slightly more accurate (and

faster) than the explicit-partition solution. Furthermore, second-order moments are close to

those of the KS economy, notably for the capital stock. From this comparison, we conclude that

our projection theory performs well compared to the global method and is faster.
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6.2 Optimal unemployment benefits at the steady-state

We now solve for the optimal unemployment benefits in the general model with both employment

and productivity risks. The period is a quarter. The calibration is adapted from Krueger,

Mittman, and Perri (2018). As before, the capital share is α = 0.36 and the depreciation rate is

δ = 0.025. The TFP process is a standard AR(1) process for TFP shocks, Zt = exp(zt), with:17

zt = ρzzt−1 + εzt , (49)

where εzt
iid∼ N (0, σ2

z). We use the standard values of ρz = 0.95 and σz = 0.31% to obtain a

standard deviation of the TFP shock zt equal to 1% at a quarterly frequency.

The productivity risk is a first-order process estimated from PSID data by Krueger, Mittman,

and Perri (2018):

log yt = ρy log yt−1 + εyt ,

with εyt
iid∼ N (0, σ2

y), ρy = 0.9923, and σy = 9.90%. The productivity process is discretized, using

the Rouwenhorst (1995) procedure, into 7 idiosyncratic states with a constant transition matrix.

As agents can be either employed or unemployed, each agent can be in 14 = 7× 2 idiosyncratic

states.

For the labor market, we follow Shimer (2003) and assume that the job-separation rate is

constant over the business cycle, and that the job-finding rate is time-varying and procyclical.

We find ΠSS
eu = 4.87% for the average job-separation rate, ΠSS

ue = 78.6% for the average job-

finding rate, and 10% for the standard deviation of the job-finding rate.18 As the standard

deviation of zt is 1%, we assume that the job-finding rate is defined as follows:

Πue,t = ΠSS
ue + σuezt, with σue = 10.

The period utility function is u(C) = ln(C) and the discount factor is equal to β = 0.99.

Various values of the Frisch elasticity of labor supply, ϕ, are used in quantitative work (see

Chetty, Guren, Manoli, and Weber 2011). Following Heathcote (2005) we use ϕ = 0.3, which is

in the lower range of empirical estimates, but may be more realistic for business cycle dynamics.

The scaling parameter is set to χ = 0.38, which implies normalizing the aggregate labor supply
17Krueger, Mittman, and Perri (2018) use a two-state Markov process representation of this AR(1) process in

order to use the KS algorithm.
18See the estimates of Challe and Ragot (2016), for instance. Krueger, Mittman, and Perri (2018) estimate

a labor process to match labor market dynamics in normal times and in severe recessions. Their labor process
estimation appears to be close to ours, with an implied autocorrelation of Πue,t of 0.96 and a standard deviation
of 0.4%.
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to 1. Table 4 provides a summary of the model parameters.

Parameter Description Value

β Discount factor 0.99

α Capital share 0.36

δ Depreciation rate 0.025

ΠSS
ue Average job finding rate 78.6%

ā Credit limit 0

ΠSS
eu Average job separation rate 4.87%

U Steady-state unemployment rate 5.83%

ρz Autocorrelation TFP 0.95

σz Standard deviation TFP shock 0.31%

σue Cov. job find. rate with TFP 10

ρy Autocorrelation idio. income 0.9923

σy Standard dev. idio. income 9.90%

χ Scaling param. labor supply 0.38

ϕ Frisch elasticity labor supply 0.3

Table 4: Parameter values of the baseline calibration. See the text for descriptions and targets.

To ease the analysis, the list of the model equations can be found in Appendix D. Because

of the 14 idiosyncratic shocks, we use an implicit partition. An explicit partition would generate

a state-space too large for this high number of idiosyncratic states. For each idiosyncratic state,

we consider 15 equally-populated history bins. Accordingly, we follow 14× 15 = 210 agent bins

in the dynamic model. We solve the dynamic model using the Dynare solver, to generate a

first-order perturbation around the steady-state. The Ramsey allocation is determined by 1, 520

equations, including the planner’s first-order conditions. The algorithm presented in Appendix

F solves the model in 40 seconds.

6.2.1 Results

The optimal replacement rate is found to be φSS = 79% at the steady-state for the baseline

calibration presented in Table 4. As mentioned above, the current model does not consider other
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distortions studied in the literature on UI (relating to moral hazard) and does not include other

public spending finance needs. This evaluation should thus be considered as an upper estimate.

Before analyzing the quantitative trade-offs generating this replacement rate, we first analyze

the convergence properties of the model when we change the structure of the partition. The first

four lines of Table 5 report the convergence properties of the model’s correcting parameters ξU

and ξu when the number of elements N in the wealth partition increase, but when all history

bins remain of equal size. ξU corrects the within-bin heterogeneity for the utility function U ,

while ξu corrects the heterogeneity for the marginal utility of consumption appearing in the Euler

equations. As expected, the between-bin variance of each of these quantities, denoted by var(ξU )

and var(ξu) respectively, decreases monotonically with the number of elements, N . The choice

N = 15 appears to be a good trade-off between the inequality representation and the accuracy

of the aggregate dynamics. The corresponding Gini for wealth is 0.78 in the projected economy

for N = 15, which is the same value as in the Bewley economy. The last two lines of Table 5

analyze the convergence properties of the matrices Πa and Πu, which correct for heterogeneity in

transitions, reporting the standard deviation std
(
ΠS
i,j −Πu

i,j

)
over i, j = 1...210. As expected,

these variances tend toward 0, and matrices are close and close to ΠS as N increases. Finally,

the aggregate dynamics appear not to depend significantly on N , for values of N greater than

10.

N 5 10 15 20

mean
(
ξU
)

0.9040 1.0010 0.9990 0.9999

std(ξU ) 0.7166 0.0384 0.0097 0.0087

mean (ξu) 1.0259 1.0120 1.0062 1.0044

std(ξu) 0.0377 0.0259 0.0160 0.0138

std
(
ΠS −Πu

)
0.0625 0.0463 0.0344 0.0303

std
(
ΠS −Πa

)
0.0240 0.0151 0.0101 0.0080

Table 5: Convergence properties of correcting coefficients ξU , ξu ,Πa, and Πu for increasing N .
See text for details.

To provide further intuitions of the distortions in this economy, Table 6 gathers statistics for

the Lagrange multipliers λ of Euler equations. As already explained, these Lagrange multipliers

can be positive, if agents are not saving enough, or negative if they are saving too much – as

seen from the planner’s perspective. We consider the case where the replacement rate is set
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to φSS = 79% and the case where φ = 50% to examine the effects on distortions when the

replacement rate is lower. For both cases, we compute the mean and the standard deviation

of the Lagrange multipliers between bins, denoted by mean (λ) and std (λ), respectively. We

also report the correlation corr(λ, ã) between the Lagrange multiplier and beginning-of-period

wealth. In the baseline case of φ = 79%, the average value of Lagrange multipliers between

agents is found to be positive. As a consequence, the planner would like agents to save more and

the capital stock to increase. A higher capital stock would raise the income of low-productivity

agents, as discussed in Dávila, Hong, Krusell, and Ríos-Rull (2012). The standard deviation

is found to be large and the correlation between Lagrange multipliers and beginning-of-period

wealth is positive. Poor agents have a negative multiplier λ, whereas rich agents have a positive

one. The planner would therefore like poor agents to save less, whereas rich agents should save

more. The planner cannot reach this outcome by relying solely on the replacement rate, because

decreasing the replacement rate increases the capital stock by increasing the saving incentives

of wealth-poor agents for self-insurance purposes. These points are confirmed when considering

the lower replacement rate of φ = 50%. The capital stock K is higher than in the case where

φ = 79%. Agents save more and the average value of the Lagrange multiplier λ is smaller. This

is obtained by an increase in consumption inequality between employed and unemployed agents

(cu/ce), which decreases from 88%, when φ = 79%, to 81% when φ = 50%.19

Replacement rate mean (λ) std(λ) corr(λ, ã) K cu/ce

φ = 79% 105 762 0.85 47.79 88%

φ = 50% 53 306 0.89 48.10 81%

Table 6: Statistics regarding the Lagrange multipliers λ of Euler equations.

Comparison with other welfare criteria It may be useful to compare our steady-state

results to those implied by other welfare criteria, which do not solve the planner’s program. A

first strategy consists in maximizing the steady-state welfare – see for instance Aiyagari and

McGrattan (1998) for an early example. This strategy generates very different allocations.

With this criterion, we find that the optimal replacement rate is close to 0, which is consistent
19It is known that incomplete insurance markets can generate either an over-accumulation or an under-

accumulation of capital compared to the constrained efficient equilibrium, see Dávila, Hong, Krusell, and Ríos-Rull
(2012) and Aiyagari (1995) for two different cases. The optimal replacement rate is a trade-off between this dis-
tortion and the amount of insurance.
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with the results of Krusell, Mukoyama, and Sahin (2010). Agents hold high savings for self-

insurance motives, which yields a very high capital stock and very high aggregate consumption.

Internalizing the cost of accumulating this capital stock – as the planner does in the Ramsey

program – generates a higher replacement rate.

Optimal unemployment benefits over the business cycle In Figure 1, we first report the

IRFs after a positive aggregate shock for selected variables to provide intuition about the optimal

behavior of the replacement rate. The first panel of Figure 1 (labeled dz) plots the TFP IRFs

after a positive innovation of TFP of one standard deviation (in percent), which corresponds

to a 0.3% increase. The second panel (labeled df) is the job-finding rate. It is procyclical and

increases by 3%, which is, by construction, 10 times more than TFP. The job-finding rate thus

increases from 78% to 81%. The GDP, plotted in the third panel (dY ), increases by 0.5%. Total

labor, in efficient units, increases by 0.4%, as reported on the fourth panel (dL). Both aggregate

consumption (5th panel, dC) and capital (6th panel, dK) are also increasing, but hump-shaped,

which is a standard outcome. The third line of Figure 1 first plots unemployment (dU), which

decreases by 0.2%. The second panel (dphi) of this third line is the replacement rate, which

increases by almost 4% (from 79% to 83%). The replacement rate – and the related labor tax

rate – are thus procyclical, which enables the planner to diminish the volatility of the economy

(see Table 7 below). The last panel (ratio_c) plots a measure of inequality, which is the average

consumption of unemployed agents over the average consumption of employed agents cu/ce. This

ratio decreases after a positive shock, implying that the ratio of the consumption of unemployed

to employed households falls. Inequalities are rising and procyclical in this economy. The higher

replacement rate and the higher labor tax do not fully offset the increasing income inequality

after a positive TFP shock.

Second-order moments. Table 7 provides second-order moment statistics for the economy

with the optimal time-varying replacement rate (first row) and for the economy with a con-

stant replacement rate set at the optimal steady-state value φSS (second row). Obviously, by

construction, the first-order moments are identical in both economies. Following the business

cycle literature since Cooley and Prescott (1995), we compute the log of variables, except for

the replacement rate φ, and we HP-filter them (with an HP-filter parameter set to 1, 600).20

The first lesson from Table 7 is that a time-varying replacement rate enables the planner to
20In the Technical Appendix, we report additional results, such as moments in levels.
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Figure 1: IRFs after a TFP positive shock. The variables dz, df, dphi are in shown in percentage-
level deviation from the steady-state. The variables dY, dC, dK, dL, ratio_c are shown in the
percentage proportional deviation from the steady-state value. See the text for a description of
the variables.

reduce the volatility of the main aggregate variables – except for the replacement rate, obviously.

The reduction is especially important for labor and consumption, and to a lesser extent for

output. The standard deviation of consumption falls from 0.28 to 0.20 when the replacement

rate is optimally time-varying. The channel comes from a reduction in the volatility of inequality

over the business cycle, as can be seen by the reduction in the volatility of ratio_c. The impact

on investment is in the same direction as the other effects but the size is one order of magnitude

smaller. This reduction in the overall volatility is generated by the pro-cyclical replacement rate

– as can be seen from column (Y, φ). The replacement rate – and the corresponding labor tax

– are high in booms and low in recessions.

Dynamics Property of the optimal replacement rate. As a final investigation, we ana-

lyze if a simple rule, relating the optimal replacement rate only to the moments of the distribution

of wealth, could provide a good approximation. Doing so do not consider the dynamics of the
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Standard Deviation (%) Correlations

C I Y L φ ratio_c (Y, Y−1) (Y,C) (Y, φ) (Y, ratio_c)

Optimal φ 0.20 1.67 0.69 0.30 5.7 4.15 0.83 0.95 0.98 -0.995

φ = φSS 0.28 1.69 0.72 0.45 0 4.61 0.80 0.98 0 -0.998

Table 7: Standard deviation (in %) and correlation for key variables and for time-varying φ (first
line) and constant φ (second line). All variables have been logged, except φ, and HP-filtered
with the parameter set to 1, 600.

distribution of Lagrange multipliers, which are in fact part of the state space. The result of a

regression of the replacement rate φ on the technology shock z, the first, second and third-order

moments of the wealth distribution generates a R2 of 0.9879, and all variables are significant.

This R2 is actually low in such economies, for which the R2 is usually closer to 1 to forecast

aggregate variables. Indeed, simulating the model for 10, 000 periods, the difference between

the optimal replacement rate and the one implied by the result of the regression is as high as

8%. From this experiment, it is unlikely that one can exclude the dynamics of the Lagrange

multipliers from the state space to approximate the dynamics of the instruments of the planner.

To conclude, the optimal replacement rate does more than merely stabilize the income ratio

between employed and unemployed agents, which would be the case with a constant replacement

rate. The optimal replacement rate is procyclical and helps to reduce the difference in the

volatility of the consumption ratio of unemployed to employed agents. However, labor tax

distortions prevent the optimal policy rate from fully isolating employment risk from aggregate

risk. As a consequence, inequalities are procyclical.

7 Conclusion

This paper presents a projection theory of sequential representations of incomplete insurance

market models. We use a finite partition of the space of idiosyncratic histories to construct

an intuitive approximated model, which can be easily simulated with aggregate shocks, and for

which optimal Ramsey policies can be derived. The paper applies the theory to characterize

optimal time-varying unemployment benefits when the economy is hit by both technology-related

and labor market shocks. The optimal replacement rate is procyclical and helps to reduce

consumption volatility.

The simulation of the model uses perturbation methods, which considerably eases implemen-

41



tation. Such methods, however, rely on small aggregate shocks around a well-defined steady-

state. They are less relevant for models with large macroeconomic shocks, for which additional

developments are needed, using global methods.

There are two main directions for further research in the current framework. The first would

be to provide a deeper analysis of the design of optimal partitions in the sequential representa-

tion. In the current paper, we use two partitions, a truncation theory and an implicit partition

based on wealth distribution. For more complex models, with either a higher number of idiosyn-

cratic states or a wider set of policy tools for the planner, it would be useful to have a general

theory of the optimal partition structure, which could be a mix of both partitions, depending

on the planner’s assigned objective. Second, the theory obviously opens the possibility of con-

sidering other applications. The underlying model could be generalized to consider any relevant

frictions on the goods, labor, or financial markets, such as limited participation on financial mar-

kets or nominal frictions. In addition, the planner could use other tools to reduce distortions,

such as a whole set of fiscal instruments or monetary policy instruments. The simplicity of the

implementation could contribute to a more systematic integration of redistributive effects in the

design of economic policies.
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Appendix

A Projection

Transition probabilities. We start by reformulating the transition probability ΠS
h̃h,t

. Be-

cause of bin heterogeneity, agents with histories st−1
1 6= st−1

2 in h̃ can face different probabil-

ities of transitioning to h. However, we can partition each h̃ into Nh̃,t elements denoted by

{h̃i}i=1,...,Nh̃,t such that for all st−1 ∈ h̃i, the probability of transitioning from st−1 to a bin

h is the same and denoted by ΠS
h̃ih,t

. Using the definition of conditional probability, we have:

µt(st ∈ h|st−1 ∈ h̃) = µt({st∈h}∩{st−1∈h̃})
µt(st−1∈h̃) = 1

µt(st−1∈h̃)
∑Nh̃,t
i=1 µt({st ∈ h} ∩ {st−1 ∈ h̃i}). Using
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the definition of conditional probability again, and the fact that µt(st ∈ h|st−1 ∈ h̃i) = Πh̃ih,t
is

by construction independent of st−1, we get:

ΠS
h̃h,t

=
Nh̃,t∑
i=1

ΠS
h̃ih,t

Sh̃i,t−1
Sh̃,t−1

. (50)

In the case of explicit partitions, there is no such heterogeneity and Nh̃,t = 1 for all h̃.

Bin sizes. For h ∈ H, the bin size is: Sh,t =
∑
h̃∈H

∑
st−1∈h̃,st∈h µt(st|st−1)µt−1(st−1). Using

the partitions of h̃ as above, we obtain:

Sh,t =
∑
h̃∈H

Nh̃,t∑
i=1

∑
st−1∈h̃i

µt(st ∈ h|st−1)︸ ︷︷ ︸
=ΠS

h̃ih,t

µt−1(st−1) =
∑
h̃∈H

Nh̃,t∑
i=1

ΠS
h̃ih,t−1

∑
st−1∈h̃i

µt−1(st−1)

︸ ︷︷ ︸
=Sh̃i,t−1

.

Using (50), we finally deduce: Sh,t =
∑
h̃∈HΠS

h̃h,t
Sh̃,t−1. For an explicit partition, this relation-

ship is unchanged (but Nh̃,t = 1 in the proof).

Projecting lagged variables. We have Ah,t[Xt−1] = 1
Sh,t

∑
h̃∈H,st−1∈h̃Xt−1

(
st−1)µt(st ∈

h|st−1)µt−1(st−1). Using a partition of h̃, and after some algebraic operations, we obtain:

Ah,t[Xt−1] = 1
Sh,t

∑
h̃∈H

∑Nh̃,t
i=1 ΠS

h̃ih
Sh̃i,t−1Xh̃i,t−1

Sh̃,t−1Xh̃,t−1︸ ︷︷ ︸
=ΠX

h̃h,t

Sh̃,t−1Xh̃,t−1, (51)

Note that ΠX
h̃h,t
∈ [0, 1] and

∑
h∈HΠX

h̃h,t
= 1 and that

(
ΠX
h̃h,t

)
h̃h

defines a transition matrix.

For an explicit partition, Nh̃,t = 1 and we can simplify equation (51) with ΠX
h̃h,t

= ΠS
h̃h,t

.

Projecting a conditional expectation. Using the same technique as for Sh,t, we obtain:

Ah,t[EtXt+1
(
st+1

)
] = Et

∑
h̃∈H

ΠS
hh̃,t+1

∑
st∈hXt+1

(
(st, sh̃)

) µt(st)
Sh,t

Xt+1,h̃︸ ︷︷ ︸
=Πu

h̃h,t

Xt+1,h̃. (52)

For explicit partitions, the expression barely simplifies but in the absence of bin heterogeneity

(i.e., ∀st ∈ h, Xt+1
(
(st, sh̃)

)
= Xt+1,h̃), we have Ah,t[EtXt+1

(
st+1)] = Et

∑
h̃∈HΠS

hh̃,t+1Xt+1,h̃.
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B Proof of Proposition 2

We denote by s∞ = (s0, s1, . . .) an infinite idiosyncratic history. The history s∞ can be seen as a

Markov chain where each si takes a value in (S,FS), where FS are the σ-algebras generated by S

(which is finite in our case). The whole chain s∞ lies in the sequence space Ω = S×S× . . . = S∞

endowed with the product σ-algebra F∞ = F∞S and the measure µ∞. We recall that the set Ω

is uncountably infinite and has the cardinality of the continuum. Such a measure can be seen

as the infinite product measure that coincides with the standard Markov distribution for any

finite sequence. This measure exists even when the state-space S is infinite (and even when the

support of the time index is a subset of R) and can be shown to be the limit of the product

measure of transition kernels (generalizing the transition matrix in the case of a non-finite state-

space S). An important feature of the infinite product measure is that it is consistent with the

usual Markov measure for any finite sequence. The proof of the existence of the infinite product

measure is in general not trivial and relies on the Kolmogorov extension theorem (see Tao 2011,

Theorem 2.4.3). In our case of a finite Markov chain, the infinite measure is uniquely determined

by its initial distribution and its transition matrix (see Brémaud 2014, Theorem 1.1).

We now consider the probability space (Ω,F , µ∞). Let Hn be a partition of idiosyncratic

histories. A history-bin hn ∈ Hn can then be seen as a subset of Ω and the projection of the

variable X in equation (20) can be written as: Xhn,t =
´
s∞∈hn Xt(s∞) µ∞(ds∞)´

s∞∈hn µ∞(ds∞) .

We consider the filtration associated with the partition Hn that we denote by Fn. The

conditional probability E [Xt|Fn] is a random variable, such that for any event s∞ ∈ Ω, we have:

E [Xt|Fn]s∞ = Xhn,t, (53)

where hn is the unique partition element containing s∞. In other words, the restriction of the

conditional expectation to hn coincides with Xhn,t. We have two additional properties on the

filtration sequence (Fn)n≥0.

1. The increasing partition sequence (Hn)n≥0 is such that Hn+1 is a refinement of Hn, in

the sense that any element of Hn is a union of elements of Hn+1. The filtration sequence

(Fn)n≥0 is thus increasing: Fn ⊂ Fn+1.

2. The partition sequence (Hn)n≥0 converges to the atoms of Ω, which implies (Fn) ↑ F∞.

To conclude the convergence proof, we apply the convergence theorem for conditional expectation

(see Theorem 11.2 in Billingsley 1965), which yields: E [X|Fn]s∞ → X(s∞).
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C Proof of Corollary 1

Let (Hn)n≥0 be an increasing partition sequence. First, since ξfhn,t = Ahn,t[f(Xt])
f(Xhn,t)

, we have using

definition (53), for any hn ∈ Hn, ξfhn,t = E[f(X)|Fn]s∞
f(E[X|Fn]s∞ ) , where again hn is the unique partition

element containing s∞. Using the convergence result we have just proved and the continuity of

f , we have ξfhn,t →
f(X(s∞))
f(X(s∞)) = 1.

Regarding the probability ΠX
h̃nhn,t

defined in (51), we have, for any hn, h̃n ∈ H:

ΠX
h̃nhn,t

−ΠS
h̃nhn,t

=

∑Nh̃n,t
i=1 ΠS

h̃n,ihn
Sh̃n,i,t−1(Xh̃n,it−1 −Xh̃n,t−1)

Sh̃n,t−1Xh̃n,t−1
,

from which we deduce that: |ΠX
h̃nhn,t

−ΠS
h̃nhn,t

| ≤ K
∑Nh̃n,t
i=1 |Xh̃n,i,t−1−Xh̃n,t−1| for some K > 0.

Using definition (53), we obtain that |ΠX
h̃nhn,t

−ΠS
h̃nhn,t

| ≤ K
∑Nh̃n,t
i=1 |E [Xt|Fn,i]s∞−E [Xt|Fn]s∞ |

(where Fn,i is the filtration corresponding to the sub-partition (hn,i)i,n). The convergence result

implies that the absolute difference of expectation converges to 0 (both expectations converge

to the same value) and |ΠX
h̃nhn,t

−ΠS
h̃nhn,t

| → 0.

Finally, we have for Πu
h̃h,t

defined in (52):

Πu
hnh̃n,t+1 −ΠS

hnh̃n,t+1 =
ΠS
hnh̃n,t+1
Xt+1,h̃n

( 1
Shn,t

∑
st∈hn

Xt+1(st, sh̃n)µt(st)−Xt+1,h̃n),

or using definition (53), Πu
hnh̃n,t+1 − ΠS

hnh̃n,t+1 =
ΠS
hnh̃n,t+1
Xt+1,h̃n

(E[Xt+1|Fn,t]s∞ − E[Xt+1|Fn]s∞)

– where we add to the subscript t to the filtration to distinguish the conditional expectation.

The convergence result implies then that Πu
hnh̃n,t+1 −ΠS

hnh̃n,t+1 → 0.

D Summary of the dynamics of the optimal allocation

The dynamics system characterizing the optimal allocation can be written as follows:

h ∈ H : lh,t = χϕ(1− τt)ϕwϕt y
ϕ
h1eh=e,

h ∈ H : ch,t + ah,t ≤ (1 + rt)ãh,t + ((1− τt)1eh=e + φt1eh=u) lh,tyhwt,

h ∈ H : ãh,t =
∑
h̃∈H

Π̃a
h̃hΠyh̃yh Πyhyh̃

Πeheh̃,t
Sh̃
Sh
ah̃,t, (54)

h ∈ H : Ψh,t = ξUh Uc,h,t − (λh,t − (1 + rt)Λh,t) ξuhUcc,h,t,

h /∈ C : ξuhUc(ch,t, lh,t) = β(1 + r)
∑
h̃∈H

Π̃u
hh̃Πyhyh̃

Πeheh̃,t
ξuh̃Uc(ch̃,t, lh̃,t),
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h /∈ C : Ψh,t = β
∑
h̃,

Π̃a
hh̃Πyhyh̃

Πeheh̃,t
Et
[
(1 + rt+1)Ψh̃,t+1

]
+ β

1− α
ϕ

Et

[
1

Lt+1

(
Kt

Lt+1

)α−1

×
∑
h̃

(
(1− τt+1)1eh̃=e + Se,t+1

Su,t+1
(τt+1 (1 + ϕ)− 1) 1eh̃=u

)
Ψh̃,t+1Sh̃,t+1lh̃,t+1yh̃

]
,

h ∈ C : ah,t = −ā and λh,t = 0,

Kt =
∑
h∈H

Sh,tah,t, and Lt =
∑
h∈H

Sh,tyhlh,t,∑
h∈H

Sh,tch,t +Kt = Yt +Kt−1 and φt
∑
h∈Et

Sh,tyhlh,e,t = τt
∑
h∈H

Sh,tyhlh,t,

rt = αZt

(
Kt−1

Lt

)α−1
− δ and wt = (1− α)Zt

(
Kt−1

Lt

)α
,∑

h∈H

Sh,tΛh,tξuhUc,h,t = −
∑
h∈H

Sh,tΨh,tãh,t + 1
αϕ

Kt−1

Lt

×
∑
h∈H

(
−(1− τt)1eh=e + Se,t

Su,t
(1 + αϕ− (1 + ϕ)τt) 1eh=u

)
Sh,tΨh,tlh,tỹ. (55)

Two remarks are in order. First, for sake of simplicity, in equation (54) we define the beginning-

of-period wealth in any bucket h as ãh,t. Second, the optimal replacement rate and labor tax

rate is given by equation (55), corresponding to the first-order condition of the program (42).

E Matrix representation at the steady-state

Before turning to the matrix representation, we introduce the following notation:

◦ is the Hadamard product, ⊗ is the Kronecker product, × is the usual matrix product.

For any vector V , we denote by diag (V ) the diagonal matrix with V on the diagonal. We

assume that there are N tot = N × Card(Y) × 2 elements in H, which can be identified by the

(b, y, e)b=1,...,N ;y=1,...,Card(Y );e=1,2, where e = 1 if the agent is unemployed and e = 2 if she is

employed, and N is the number of wealth bins. Equivalently, elements of H can be identified

by h = b+N × (y − 1) + (e− 1)×Card(Y)×N , such that h = 1, . . . , N tot. In other words, we

stack the wealth indices, then the productivity indices, and then the employment indices.

We derive Lagrange multipliers as a function of the the steady-state solution (i.e., allocations

and prices), which is assumed to be known. Let S be the N tot-vector of steady-state bin sizes.

Similarly, let a, c, `, ν, Uc, Ucc, ξU , and ξu be the N tot-vectors of end-of-period wealth,

consumption, labor supply, Lagrange multipliers, marginal utilities, derivative of the marginal
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utility, and correcting parameters, respectively. Also let:

W = w

 φ

1− τ

⊗


y1
...

yny

⊗ 1B, Le =

 0

1

⊗


y1
...

yny

⊗ 1B, Lu =

 1

0

⊗


y1
...

yny

⊗ 1B,

In addition, define as P the diagonal matrix having 1 on the diagonal at row h if and only if the

“agent” h is not credit constrained (i.e., νh = 0), and 0 otherwise. Similarly, define Pc = I− P,

where I is the (N tot ×N tot)-identity matrix.

From transitions across elements of the partition we can compute the (N tot×N tot)-matrices

ΠS ,Πa,Πu such that the market economy is summarized by:

S = ΠSS, (56)

S ◦ c + S ◦ a = (1 + r)Πa (S ◦ a) + (S ◦W ◦ `) ,

Pξu ◦ u′ (c) = Pβ(1 + r)Πu (ξu ◦ u′ (c)
)

+ ν,

Pca = −ā1Ntot×1,(
r + δ

α

) 1
α−1

Le
> × S = S> × a,

τ = φ
Lu
> × S

Le
> × S

, and w = (1− α)
(
r + δ

α

) α
α−1

.

If we denote by λ, Λ and Ψ the vectors associated with the Lagrange multipliers, we have:

Ψ = ξU ◦Uc − (λ− (1 + r)Λ) ◦ ξu ◦Ucc. Define the matrix ΠΛ by ΠΛ
k̃k

=
SkΠu

kk̃
Sk̃

, such that

Λ = ΠΛλ, and the matrix ΠΨ by:

ΠΨ
kk̃

= β(1 + FK)Πa
kk̃

+ β
1− α
αϕ

1
L

(r + δ)
(

(1− τ)1
k̃>Ntot

2
+ Se
Su

(τ (1 + ϕ)− 1) 1
k̃≤Ntot2

)
Sk̃lk̃ (Le + Lu)k̃ .

Note that 1
k̃>Ntot

2
represents employed agents and 1

k̃≤Ntot2
unemployed agents. One can check

that PΨ = PΠΨΨ. The key point is that ΠΨ and ΠΛ are known from the allocations.

After simple matrix algebra, we find the value of the vector of the Lagrange multiplier λ as:

λ =
[
Pc + P

(
I−ΠΨ

) (
diag (ξu ◦Ucc)×

(
I− (1 + FK)ΠΛ

))]−1
P
(
I−ΠΨ

) (
ξU ◦Uc

)
. (57)

Importantly, the whole right-hand side can be deduced from the Bewley allocation. This makes
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the computation of λ straightforward. We then deduce (Λ,Ψ) with:

Λ = ΠΛλ, and Ψ = ξU ◦Uc − ξu ◦Ucc ◦
(
I− (1 + FK)ΠΛ

)
λ. (58)

Using equations (57)–(58), we can derive Lagrange multipliers from the real allocation only.

The condition (55) for the optimality of the real allocation can be simplified into:

V>×1Ntot×1 = 0, (59)

where: V ≡ ϕα

K
(S◦Ψ◦ã + S◦Λ◦ξu◦Uc) + 1− τ

L
S◦Ψ◦Le − (1− τ + ϕ (α− τ))Se

Su
S◦Ψ◦Lu.

F Algorithm for solving the Ramsey problem

The algorithm for computing Ramsey policies is provided for implicit partitions, but can be

easily modified for explicit partitions.

1. As explained in Section 3, we consider a partition H of idiosyncratic histories. We use the

same wealth partition B for all idiosyncratic states. Assuming that the wealth partition B

has N elements, the partition H then counts Card(Y)× 2×N different history bins.

2. We set a reasonable initial value for the replacement rate φ.

(a) We solve the general Bewley model for the value of φ.

(b) We use the steady-state results to compute the model projection on the partition H.

In particular we compute the constant quantities
(
ξuh , ξ

U
h , Π̃u

hh̃
, Π̃a

h̃h
, Π̃h̃h

)
h̃,h∈H

.

(c) We determine the steady-state values of the multipliers (λh)h∈H and (Λh)h∈H, and of

the social value of liquidity (Ψh)h∈H using equations (57) and (58).

3. We iterate on φ and repeat Step 2 until equality (59) holds.

Once the steady-state and the partition have been determined, it is easy to simulate the model

using standard perturbation techniques with existing software such as Dynare (see Adjemian

et al., 2011). The simulation of the whole optimal allocation for the calibrated economy with

aggregate shocks requires less than 1 minute on a standard laptop.
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