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Abstract

We derive optimal monetary and fiscal policies in a heterogeneous-agent economy with
nominal frictions and aggregate shocks, and allowing for a rich set of fiscal tools. We first
theoretically show that when linear taxes on capital and labor are available, there is no
redistributive role for monetary policy: monetary policy solely implements price stability.
Second, when fiscal tools are incomplete, we find that optimal deviation from price stability
is quantitatively very small when the economy is running for a long time, i.e. in a timeless
perspective. Redistribution is then mostly a matter of fiscal policy. When fiscal tools are
missing, there can be a significant though temporary deviation from price stability when we
consider a time-0 problem where the planner is not constrained by past commitment. We
provide analytical results using an extended Lagrangian approach applied to incomplete-
market models. Quantitative results are derived thanks to a truncated representation of
incomplete-market models, which provides a relevant tractable environment.
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1 Introduction

Monetary policy generates redistributive effects through various channels that have been studied
in a vast empirical and theoretical literature, reviewed below. However, it is not clear how these
channels should change the conduct of monetary policy. It might be possible that monetary
policy should take into account these effects to improve welfare, and thus participate in a function
usually devoted to fiscal policy. On the contrary, monetary policy could focus only on monetary
goals and let fiscal tools either dampen or strengthen the redistributive effects of monetary policy.
To distinguish between these two claims, one must jointly solve for optimal fiscal and monetary
policies in a realistic environment, where heterogeneity among agents generates a concern for
redistribution.

To do so, we follow the so-called Bewley (1980) literature and assume incomplete insurance
markets for idiosyncratic risks to be the main source of agent heterogeneity. This framework is
known to be general enough to generate realistic income and wealth distributions. We further add
nominal frictions, modeled as costly price adjustments. This environment has been named HANK
following the seminal paper of Kaplan et al. (2018). Thanks to a methodological contribution
explained below, we derive optimal monetary and fiscal policies with commitment when four
fiscal instruments are available: a linear tax on capital income, a linear tax on labor income,
lump-sum transfers and a riskless one-period public debt. We prove two main results.

First, we derive an equivalence result: We show that there is no redistributive role for
monetary policy when the government can levy resources through linear capital and labor taxes.
In this case, monetary policy solely aims at ensuring price stability in each period – as in any
representative agent economy – and lets fiscal policy alone deal with redistribution. In this
sense, there is a perfect dichotomy between the objectives of monetary and fiscal policies in
such an economy. The redistributive role of monetary policy can stem only from missing fiscal
instruments or, more precisely, from non-optimally time-varying capital or labor tax. These
results can be understood thanks to the redistributive effects of monetary policy analyzed by
Kaplan et al. (2018) or Auclert (2019) among others. Indeed, the effects that channel through
changes in the real wage and in the real rate can be attained more efficiently by fiscal policy, as
explained below.

Although monetary policy prescriptions are the same as in the representative agent economy,
fiscal policy is very different, as there is an active role for redistribution over the business cycle.
In particular, the optimal dynamics of capital tax and public debt strongly differ from those in
a complete-market economy. Whereas the capital tax is very volatile in the complete-market
economy, it is orders of magnitude less volatile in a quantitatively relevant incomplete-market
setup. Indeed, agents then save for self-insurance motives, which makes capital taxation costlier.
The implication of a less volatile capital tax is a more volatile public debt.

Second, we extend this analysis by considering various assumptions regarding the availability
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of fiscal instruments. Indeed, it may be argued that the political decision process making can
slow down the reaction of taxes to the business cycle. We assume that the capital tax is not
time-varying, which leaves a potential role for monetary policy to affect the ex-post real interest
rate through inflation. Following the literature, we start with assessing the optimal inflation
volatility when the economy is close to its long-run equilibrium, what is called the timeless
perspective (see Woodford, 1999, for instance). As written by McCallum and Nelson (2000), this
timeless perspective is the closest notion to “optimal policy making according to a rule”. In this
case, inflation volatility remains very small even when the capital tax remains constant. As a
consequence, inflation is rarely used for redistributive purposes.

To generalize these results and compare them with the literature, we then analyze a time-0
problem in a monetary economy without capital, where the planner is not constrained by past
commitments at the moment of the shock. Our equivalence result is still valid in this case:
missing fiscal instruments are necessary to obtain a deviation from price stability. When taxes
are not time-varying, we find that inflation significantly departs from price stability in the initial
period. Inflation changes are front-loaded, as in the optimal capital tax literature (Chari and
Kehoe, 1999, or Nuño and Thomas, 2020 for a recent reference). This experiment shows that
our results are consistent with recent papers (in particular Acharya et al., 2020, Bhandari et al.,
2020, and Nuño and Thomas, 2020).1 As a consequence, deviation from price stability requires
two conditions: missing fiscal instruments and a time-0 problem, where monetary authorities are
not constrained by past commitments.

Deriving theoretical and quantitative results for optimal policies in incomplete-market
economies with aggregate shocks is a challenging task. We perform our analysis thanks to
two methodological contributions. First, we elaborate on the Lagrangian approach of Marcet and
Marimon (2019), which appears particularly well-suited for HANK economies. We introduce the
notion of net social value of liquidity for each agent, which considerably simplifies the algebra and
interpretation. Second, to simulate the model, we use a truncated representation of incomplete
insurance market economies that we apply here to a monetary economy. This theory of the
truncation, also used in LeGrand and Ragot (2020) to study optimal unemployment benefits,
constructs a consistent and accurate approximation of the economy where heterogeneity depends
only on a finite but arbitrarily large number of past consecutive realizations of idiosyncratic
risk. This allows us to estimate an empirically relevant social welfare function and to derive the
dynamics of the model with a number of available planner’s instruments. We check that the
truncated approach generates accurate results by comparing its outcomes with other standard
solution methods (Reiter, 2009; Boppart et al., 2018) and by comparing results regarding optimal
policies with the ones found in the literature (Acharya et al., 2020; Bhandari et al., 2020; Nuño
and Thomas, 2020).

1We also perform additional comparison exercises (on initial distribution, severity of credit constraint, or a
time-varying idiosyncratic risk) and our results are consistent with those of the aforementioned papers.
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Discussion of the related literature. First, our equivalence result must be related to the
five transmission channels of monetary policy that have been identified in the heterogeneous-agent
literature (Kaplan et al. 2018 and Auclert, 2019 among others). Monetary policy has direct
effects, going through changes in real returns (Gornemann et al., 2016). The changes in returns
generate a substitution effect, already present in the representative-agent new-Keynesian model
(Woodford, 2003). Inflation also affects the real value of nominal assets, through a Fisher effect
(Doepke and Schneider, 2006). Changes in real returns generate a wealth effect due to unhedged
interest rate exposure, identified by Auclert (2019). In addition to these three direct channels,
there are also two indirect effects due to the endogeneity of labor income and to the heterogeneous
exposure to income variations (Coibion et al., 2017, Acharya and Dogra, 2020).

Our result states that fiscal policy can substitute for the five monetary channels without
incurring the cost of price distortions. More precisely, capital tax is a sufficient instrument for
the planner to reproduce any allocation that can be reached with the three direct channels,
because it directly affects the return on capital. The labor tax is sufficient to replicate allocations
reachable with the two indirect effects, because it directly affects labor income. Thus, linear taxes
on capital and on labor are sufficient for monetary policy to optimally focus on price stability
alone and to let fiscal policy deal with redistribution. The proof is thus similar to the one of
Correia et al. (2008) and Correia et al. (2013), who consider consumption tax (and not capital
tax) in representative-agent economies. Different monetary effects can be summarized by their
impact on a distortion, for which a fiscal tool can have a direct effect.

This paper also connects to the literature investigating optimal policies with incomplete
markets and heterogeneous agents. A first strand of this literature relies on tractable models
featuring a simple distribution of wealth, which enables identifying the trade-offs faced by optimal
policies. Challe (2020) solves for optimal monetary policy in a “zero-liquidity” environment
with endogenous risk. Bilbiie and Ragot (2020) study optimal monetary policy in a tractable
model with limited heterogeneity and money. Bilbiie (2020) analyzes a no-trade equilibrium
with two types of agents. McKay and Reis (2020) solve for optimal simple fiscal rules (automatic
stabilizers) in a tractable model considering exogenous monetary policy. In a time-0 experiment,
they also find that there is a significant deviation from price stability when fiscal instruments are
missing.

A second strand of the literature analyses optimal policies with more general distributions of
wealth. This is especially true for the literature on optimal fiscal policy in incomplete-market
and heterogeneous-agent models (Aiyagari et al., 2002; Werning, 2007; Bassetto, 2014; Açikgöz
et al., 2018, or Dyrda and Pedroni, 2018 among others). In this strand, three recent papers study
optimal monetary policy with incomplete insurance-markets: Acharya et al. (2020), Bhandari
et al. (2020), and Nuño and Thomas (2020). Nuño and Thomas (2020) solve for optimal monetary
policy under commitment in an economy with uninsurable idiosyncratic risk, nominal long-term
bonds and costly inflation. They propose a methodology based on calculus of variation. They
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show that the optimal policy features inflation front-loading that can be sizable in a time-0
problem (especially when the initial distribution differs from the steady-state one). However,
they also find that in a timeless perspective, optimal deviations from price stability remain
limited. Acharya et al. (2020) solve for optimal monetary policy using the tractability of the
CARA-normal environment without capital. They show that a countercyclical idiosyncratic
risk creates a motive for redistribution and hence for monetary policy. They focus on a time-0
problem and deviation from price stability remains of small magnitude in their quantitative
applications, except when the price-adjustment cost becomes very small. Bhandari et al. (2020)
quantitatively solve for optimal monetary and fiscal policies in a new-Keynesian model with
aggregate shocks. In a time-0 experiment, they report a significant deviation from price stability
when fiscal instruments are missing and the initial distribution different from the steady-state
one. They also quantitatively find that inflation volatility is low when time-varying capital taxes
are introduced. In this literature, our contribution is to jointly characterize optimal public debt
and fiscal-monetary policy dynamics in both the timeless and time-zero perspective, and in a
setup with capital and occasionally binding credit constraints. We can also compare our results
with previous findings by picking relevant calibration of our framework.

2 The environment

Time is discrete, indexed by t > 0. The economy is populated by a continuum of agents of size 1,
distributed on a segment J following a non-atomic measure `: J(`) = 1. Following Green (1994),
we assume that the law of large numbers holds.

2.1 Risk

The only aggregate shock affects the technology level in the economy. We denote this risk by
(zt)t≥0 and we assume that follows an AR(1) process follows: zt = ρzzt−1 + uzt with ρz > 0 the
persistence parameter and the shock uzt being a white noise with a normal distribution N (0, σ2

z).
The economy-wide productivity, denoted (Zt)t≥0, is assumed to relate to zt through: Zt = Z0e

zt .
The history of aggregate risk up to period t is denoted zt.

In addition to this aggregate shock, agents face an uninsurable idiosyncratic labor productivity
shock y ∈ Y. An agent i can adjust her labor supply, denoted by lit and earns the before-tax
hourly wage w̃t (which depends on the aggregate shock). Therefore, her total before-tax wage
amounts to yitw̃tlit. We assume that the productivity process is a first-order Markov chain with
constant transition probabilities, denoted by Πyy′ . The share of agents with productivity y,
denoted by Sy, is constant and equal to: Sy =

∑
ỹΠỹySy for all y ∈ Y. Finally, a history of

productivity shocks up to date t is denoted by yt = {y0, . . . , yt}. Using transition probabilities,
we can compute the measure θt, such that θt(yt) represents the share of agents with history yt in
period t.
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2.2 Preferences

In each period, the economy has two goods: a consumption good and labor. Households are
expected utility maximizers and they rank streams of consumption (ct)t≥0 and of labor (lt)t≥0

according to a time-separable intertemporal utility function equal to
∑∞
t=0 β

tU(ct, lt), where
β ∈ (0, 1) is a constant discount factor and U(c, l) is an instantaneous utility function. As is
standard in this class of models, we focus on the case where U is a Greenwood-Hercowitz-Huffman
(GHH) utility function, exhibiting no wealth effect for the labor supply. For any consumption c
and labor supply l, the instantaneous utility U(c, l) can be expressed as:2

U(c, l) = u

(
c− χ−1 l1+1/ϕ

1 + 1/ϕ

)
,

where ϕ > 0 is the Frisch elasticity of labor supply, χ > 0 scales labor disutility, and u : R+ → R
is twice continuously derivable, increasing, and concave, with u′(0) =∞.

2.3 Production

The consumption good Yt is produced by a unique profit-maximizing representative firm that
combines intermediate goods (yft (j))j from different sectors indexed by j ∈ [0, 1] using a standard
Dixit-Stiglitz aggregator with ε an elasticity of substitution, denoted ε:

Yt =
[ˆ 1

0
yft (j)

ε−1
ε dj

] ε
ε−1

.

For any intermediate good j ∈ [0, 1], the production yft (j) is realized by a monopolistic firm.
The profit maximization for the firm producing the final good implies:

yft (j) =
(
pt(j)
Pt

)−ε
Yt, where Pt =

(ˆ 1

0
pt(j)1−εdj

) 1
1−ε

.

The quantity Pt is the price index of the consumption good. Intermediary firms are endowed
with a Cobb-Douglas production technology and use labor and capital as production factors. The
production technology involves that l̃t(j) units of labor and k̃t(j) units of capital are transformed
into Ztk̃t(j)α l̃t(j)1−α units of intermediate good. At the equilibrium, this production will exactly
cover the demand yft (j) for the good j, which will be sold with the real price pt(j)/Pt. We
denote as w̃t the real before-tax wage and r̃Kt the real before-tax net interest rate on capital
– which are both identical for all firms. The capital depreciation is denoted δ > 0. Since
intermediate firms have market power and internalize it, the firm’s objective is to minimize
production costs, including capital depreciation, subject to producing the demand yt(j). The
cost function C(j) of firm j is therefore C(j) = minl̃t(j),k̃t(j){(r̃

K
t + δ)k̃t(j) + w̃t l̃t(j)}, subject to

2Our results do not depend on this functional form. See Section 3.3 for a general function U .
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yft (j) = Ztk̃t(j)α l̃t(j)1−α. Denoting ζt(j) the Lagrange multiplier of the production constraint,
first-order conditions imply:

r̃Kt + δ = ζt(j)α
yft (j)
k̃t(j)

and w̃t = ζt(j)(1− α)y
f
t (j)
l̃t(j)

. (1)

We deduce that the optimum features a common value, denoted by ζt, independent of firm type
j. Indeed, we have:

ζt = 1
Zt

(
r̃Kt + δ

α

)α (
w̃t

1− α

)1−α
. (2)

The firm j’s cost becomes then C(j) = ζty
f
t (j), which is linear in the demand yft (j). Following

the literature, we assume the presence of a subsidy τY on the total cost, which will compensate
for steady-state distortions, such that the total cost supported by firm j is ζtyft (j)(1 − τY ).
Integrating factor price equations (1) over all firms leads to:

Kt−1 = 1
Zt

(
r̃Kt + δ

α

)α−1 (
w̃t

1− α

)1−α
Yt and Lt = 1

Zt

(
r̃Kt + δ

α

)α (
w̃t

1− α

)−α
Yt, (3)

where Yt is the total production, with which (3) verifies:

Yt = ZtK
α
t−1L

1−α
t = (r̃Kt + δ)Kt−1 + w̃tLt

ζt
. (4)

Finally, in this set-up, the usual factor price relationships do not hold but we still have:

Kt−1
Lt

= α

1− α
w̃t

r̃Kt + δ
. (5)

In a real setup (featuring ζt = 1 for all t), equations (2) and (5) fall back to the standard
definitions of factor prices: r̃t + δ = αZt

(
Kt−1
Lt

)α−1
and w̃t = (1− α)Zt

(
Kt−1
Lt

)α
.

In addition to the production cost, intermediate firms face a quadratic price adjustment cost à
la Rotemberg (1982) when setting their price. Following the literature, the price adjustment cost is
proportional to the magnitude of the firm’s relative price change and equal to κ

2

(
pt(j)
pt−1(j) − 1

)2
Yt,

where κ ≥ 0. We can thus deduce the real profit, denoted Ωt(j), at date t of firm j:

Ωt(j)=
(
pt(j)
Pt
−
(
r̃t + δ

α

)α( w̃t
1− α

)1−α 1− τY

Zt

)(
pt(j)
Pt

)−ε
Yt −

κ

2

(
pt(j)
pt−1(j) − 1

)2
Yt − tYt , (6)

where tYt is a lump-sum tax financing the subsidy τY . Computing the firm j’s intertemporal profit
requires to define the firm’s pricing kernel. In a heterogeneous agent economy, there is no obvious
choice for the pricing kernel. We discuss this aspect in Section 2.7. For the moment, we assume
only that the firm’s j pricing kernel is independent of its type and we denote it by Mt

M0
. With this

notation, the firm j’s program consisting in choosing the price schedule (pt(j))t≥0 maximizing the
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intertemporal profit at date 0, can be expressed as: max(pt(j))t≥0 E0[
∑∞
t=0 β

t Mt
M0

Ωt(j)]. Since this
program yields a solution independent of the firm type j, all firms in the symmetric equilibrium
will charge the same price: pt(j) = Pt. Denoting the gross inflation rate as Πt = Pt

Pt−1
and setting

τY = 1
ε to obtain an efficient steady state, we obtain the standard equation characterizing the

Phillips curve in our environment:

Πt(Πt − 1) = ε− 1
κ

(ζt − 1) + βEtΠt+1(Πt+1 − 1)Yt+1
Yt

Mt+1
Mt

. (7)

The real profit, independent of firm’s type, becomes then with πt = Πt − 1:

Ωt =
(

1− ζt −
κ

2π
2
t

)
Yt. (8)

2.4 Assets

Agents have the possibility to trade two assets. The first one is nominal public debt, whose
size is denoted by Bt at date t. Public debt is issued by the government and is assumed to be
exempt of default risk. The nominal debt pays off a nominal gross and pre-tax interest rate that
is predetermined. In other words, the interest rate between dates t− 1 and t is known at t− 1.
We denote this (gross and before tax) interest rate by R̃B,Nt−1 . The associated real before-tax
(gross) interest rate for public debt is R̃B,Nt−1 /Πt, where Πt is the gross inflation rate. Note that
due to inflation, this ex-post real rate is not pre-determined anymore. The second asset is capital
shares, which pay off a (net and before-tax) real interest rate r̃Kt – as introduced above.

We assume that the whole public debt and the whole capital are held by a risk-neutral fund
and that agents can trade shares of this fund. The interest rate paid by this fund to agents is
denoted by r̃t. The gain of this market arrangement is to allow for two different asset classes,
without a portfolio choice (see Gornemann et al., 2016, Bhandari et al., 2020 among others). Our
theoretical results do not depend on this assumption, as shown in Section 3.3.

The three interest rates, for public debt, capital and the fund, are connected by two different
relationships. The first reflects the non-profit condition of the fund. We denote by At the
total asset amount in the economy, equal to the sum of public debt and capital, which verifies
At = Kt + Bt. Since the fund holds all the public debt and the capital and sell shares, its
non-profit condition at date t implies:

r̃tAt−1 = r̃Kt Kt−1 +
(
R̃B,Nt−1

Πt
− 1

)
Bt−1. (9)

The second relationship is the no-arbitrage condition between public debt holdings and capital
shares. This condition states that one unit of consumption invested in each of the two assets
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should yield the same expected return. Formally, this condition can be written as:

Et

[
R̃B,Nt

Πt+1

]
= Et

[
1 + r̃Kt+1

]
. (10)

Because of the fund intermediation, households make no actual portfolio choice and we will
denote by at their holdings in fund claims. Agents face borrowing constraints, and their fund
holdings must be higher than −ā ≤ 0. Alternatively, this constraint states that agents cannot
borrow more than the amount a. In the rest of the paper, we will focus on the case where the
credit limit is above the steady-state natural borrowing limit.3

2.5 Government, fiscal tools and monetary policy

In each period t, the government has to finance an exogenous and possibly stochastic public
good expenditure Gt ≡ Gt(zt), as well as lump-sum transfers Tt, which will be optimally chosen.
The latter transfers can be thought of as social transfers, which can contribute to generating
progressivity in the overall tax system. Heathcote et al. (2017) have shown that such transfers
are needed to properly replicate the US fiscal system. The government has several tools for
financing these expenditures. First, the government can levy two distorting taxes. A first tax τKt
is based on payoffs of all interest-rate bearing assets. The second tax τLt concerns labor income.
Second, the government can also tax the firms’ profits. Finally, the government can also issue
a one-period riskless public nominal bond. To sum up, fiscal policy is characterized by four
instruments (τLt , τKt , Tt, Bt)t≥0 given an exogenous public spending stream (Gt)t≥0.

After-tax quantities are denoted without a tilde. The real after-tax wage wt, as well as
the real after-tax interest rates rt, rKt , and RB,Nt (for the fund, the capital and public debt,
respectively) can therefore be expressed as follows:

wt = (1− τLt )w̃t, rt = (1− τKt )r̃t, (11)

rKt = (1− τKt )r̃Kt ,
RB,Nt

Πt
− 1 = (1− τKt )(

R̃B,Nt−1
Πt

− 1). (12)

Taxes on asset-bearing assets are identical for all asset classes and are levied on real returns. The
period t real return on the nominal interest rate R̃B,Nt−1 , set in period t− 1 is affected by both the
period-t inflation rate and the period-t capital tax (hence the notation RB,Nt in (12)).

Regarding firm taxation, we assume that the government fully taxes profits. This solution
simplifies the distribution of firm profits among the population of heterogeneous agents. As labor
and capital taxes are distorting, this profit taxation policy avoids further distortion.

The government uses its financial resources, made of labor and asset taxes, firm profits and
3Aiyagari (1994) discusses the relevant values of ā, called the natural borrowing limit in an economy without

aggregate shocks. Shin (2006) provides a similar discussion in presence of aggregate shocks. A standard value in
the literature is ā = 0, which ensures that consumption remains positive in all states of the world.
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public debt issuance, to finance public good, lump-sum transfers and debt repayment:

Gt +
R̃B,Nt−1

Πt
Bt−1 + Tt ≤ τLt w̃tLt + τKt

(
r̃Kt Kt−1 +

(
R̃B,Nt−1

Πt
− 1

)
Bt−1

)

+
(

1− ζt −
κ

2π
2
t

)
Yt +Bt.

The expression of this government budget constraint can be simplified, following Chamley (1986).
Using the relationships (1) and (4), as well as the definition of post-tax rates in equations (11)
and (12), the governmental budget constraint becomes:

Gt +Bt−1 + rt (Bt−1 +Kt−1) + wtLt + Tt = Bt +
(

1− κ

2π
2
t

)
Yt − δKt−1. (13)

Monetary policy consists in choosing the nominal interest rate R̃B,Nt on public debt (between t
and t+ 1), and the inflation rate πt. The choice of optimal monetary-fiscal policy is thus the
choice of the path of the instruments (τLt , τKt , Tt, Bt, R̃

B,N
t , πt)t≥0. These instruments are not

independent and are intertwined though the budget constraint of the government and the Phillips
curve.

2.6 Agents’ program, resource constraints and equilibrium definition

Each agent i is endowed at the date 0 by an initial wealth a−1 and an initial productive status
y0 drawn out of an initial distribution Λ0(a, y) : [−ā;∞)×Y → R+. At future dates, her savings
pay off the post-tax real interest rate rt between period t − 1 and period t but must remain
greater than an exogenous threshold denoted −ā ≤ 0. Formally, the agent’s program can be
expressed, for a given initial endowment ai−1 and given initial shocks yi0 and z0, as:

max
{cit,lit,ait}

∞
t=0

E0

∞∑
t=0

βtu

(
cit − χ−1 l

i,1+1/ϕ
t

1 + 1/ϕ

)
, (14)

cit + ait = (1 + rt)ait−1 + wty
i
tl
i
t + Tt, (15)

ait ≥ −ā, cit > 0, lit > 0, (16)

where E0 an expectation operator over both idiosyncratic and aggregate risk.
As we express households’ budget constraint using post-tax prices (and not tax rates), it

is useful to comment equation (15) to discuss the effect of fiscal and monetary policies in
relationship to the literature. First, an unexpected change in capital tax affects period t income,
proportionally to interest payment on past savings payoffs r̃tait−1, as all capital incomes are
taxed at the same rate, i.e. rt = (1− τKt )r̃t. Past savings payoffs are the amount of unhedged
interest rate exposures (UREs) at period t − 1, using the wording of Auclert (2019). Second,
an unexpected change in inflation affects the average return on the total portfolio, rt, due to a
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Fisher effect, which can be seen in the definition of the pre-tax return on the total portfolio r̃t, in
equation (9). This effect is proportional to the share of nominal assets in the total portfolio Bt−1

Πt .

Third, labor tax affects the post-tax wage rate, which generates a heterogeneous income effect
and a heterogeneous labor-supply effect. Finally, a change in the lump-sum transfer uniformly
affects total income without distortion.

At date 0, the agent decides her consumption (cit)t≥0, her labor supply (lit)t≥0, and her saving
plans (ait)t≥0 that maximize her intertemporal utility (14), subject to the budget constraint (15)
and the borrowing limit (16). These decisions are functions of the initial state (ai−1, y

i
0), of the

history of the idiosyncratic shock yi,t and of the history of the aggregate shocks zt. Thus, there
exist sequences of functions, defined over ([−ā; +∞[×Y)× Yt × Rt and denoted by (ct, at, lt)t≥0,
such that agent’s optimal decisions can be written as follows:4

cit = ct((ai−1, y
i
0), yi,t, zt), ait = at((ai−1, y

i
0), yi,t, zt), lit = lt((ai−1, y

i
0), yi,t, zt). (17)

In what follows, we will simplify notation and keep the i-index. For instance, we write cit instead
of ct((ai−1, y

i
0), yi,t, zt).

The first-order conditions (FOCs) corresponding to the agent’s program (14)–(16) can be
expressed as – by using the properties of the GHH utility function:

u′(cit − χ−1 l
i,1+1/ϕ
t

1 + 1/ϕ) = βEt
[
(1 + rt+1)u′(cit+1 − χ−1 l

i,1+1/ϕ
t+1

1 + 1/ϕ)
]

+ νit , (18)

l
i,1/ϕ
t = χwty

i
t, (19)

where the discounted Lagrange multiplier of the credit constraint of agent i can be written as
νit = νt((a−1, y0), yi,t, zt), similarly to optimal choices. This Lagrange multiplier is null when
agent i is not credit-constrained.

We now express the economy-wide constraints:
ˆ
i
ait`(di) = At = Bt +Kt,

ˆ
i
yitl

i
t` (di) = Lt, (20)

ˆ
i
cit`(di) +Gt +Kt =

(
1− κ

2π
2
t

)
Yt +Kt−1 − δKt−1, (21)

which correspond to the clearing of the financial market, of the labor market and of the goods
market, respectively.5

Equilibrium definition. Our market equilibrium definition can be stated as follows.

4The existence of such functions is proven in Miao (2006), Cheridito and Sagredo (2016), and Açikgöz (2016).
5It would be equivalent to use the sequential representation and to integrate over initial states (of mea-

sure Λ) and idiosyncratic histories (of measure θ). For instance, total savings can be written as:
´
i
ait`(di) =∑

yi,t∈Yt

∑
y0∈Y

´
a−1∈[−ā;+∞) at((a−1, y0), yi,t, zt)θt(yi,t)Λ(da−1, y0) = At(zt).
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Definition 1 (Sequential equilibrium) A sequential competitive equilibrium is a collection
of individual functions (cit, lit, ait, νit)t≥0,i∈I , of aggregate quantities (Kt, Lt, Yt)t≥0, of price pro-
cesses (wt, rt, rKt , R

B,N
t , w̃t, r̃t, r̃

K
t , R̃

B,N
t )t≥0, of fiscal policies (τKt , τLt , Bt, Tt)t≥0, and of monetary

policies (Πt)t≥0 such that, for an initial wealth and productivity distribution (ai−1, y
i
0)i∈I , and

for initial values of capital stock and public debt verifying K−1 +B−1 =
´
i a
i
−1`(di) and of the

aggregate shock z0, we have:

1. given prices, the functions (cit, lit, ait, νit)t≥0,i∈I solve the agent’s optimization program in
equations (14)–(16);

2. financial, labor, and goods markets clear at all dates: for any t ≥ 0, equations (20) and
(21) hold;

3. the government budget is balanced at all dates: equation (13) holds for all t ≥ 0;

4. factor prices (wt, rt, rKt , R
B,N
t , w̃t, r̃t, r̃

K
t , R̃

B,N
t )t≥0 are consistent with condition (5), re-

strictions (9) and (10), as well as with post-tax definitions (11) and (12);

5. the inflation path (Πt)t≥0 is consistent with the dynamics of the Phillips curve: at any date
t ≥ 0, equation (7) holds.

2.7 The Ramsey problem

The goal of this paper is to determine the optimal fiscal policy that generates the sequential
equilibrium-maximizing aggregate welfare, using an explicit aggregate welfare criterion. This
is a difficult question, as the policy is composed of five instruments (τLt , τKt , Tt, Bt, R̃

B,N
t , πt)t≥0

which affect the saving decisions and the labor supplies of all agents, the capital stock, and the
price dynamics. This fiscal policy consists of a path for transfers, labor and capital taxes, as
well as a path for public debt, while the monetary policy consists of nominal interest rate and
an inflation path. Interestingly, monetary policy has to balance the cost of output destruction
(through price adjustment costs) and nominal debt monetization (as well as a more indirect role
on mark-ups). The government has to select the competitive equilibrium associated with the
greatest welfare, subject to a constraint of balanced governmental budget.

The aggregate welfare. We consider a general welfare function that depends on the weights
on the utility of each agent. For the sake of generality, we assume that these weights are consistent
with the sequential representation, and depend on initial conditions and an idiosyncratic and ag-
gregate history. The weight of agent i ∈ I at date t is ωit = ωt((a−1, y0), yi,t, zt), where the weights
satisfy 1 =

´
iw

i
t`(di) =

∑
yi,t∈Yt

∑
y0∈Y

´
a−1∈[−ā;+∞)wt((a−1, y0), yi,t, zt)θt(yi,t)Λ(da−1, y0) for

t ≥ 0. These weights represent the relative importance of each agent in the planner’s objective
and will be calibrated in our quantitative exercise of Section 5, so as to match the US fiscal and
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monetary policies at the steady-state. We detail the calibration procedure in Section 4. Formally,
the aggregate welfare criterion can be expressed as follows:

W0 = E0

[ ∞∑
t=0

βt
ˆ
i
ωitU(cit, lit)`(di)

]
. (22)

Choosing the pricing kernel. As explained above, in a heterogeneous-agent economy, there
is no straightforward choice for the firm’s pricing kernel. We here assume that firms’ pricing
kernel is defined based on the weighted marginal utilities of agents. More precisely, the pricing
kernel Mt is set consistently with the aggregate welfare criterion (22):

Mt =
ˆ
i
ωitUc(cit, lit)`(di). (23)

We choose this pricing kernel to avoid any inefficiency in the financial sector that the planner
would like to correct. As noted by others (Acharya and Dogra, 2020; Bhandari et al., 2020), the
choice of the pricing kernel has, however, minor quantitative effects.6

The Ramsey program. We formalize the Ramsey program as follows:

max
(wt,rt,w̃t,r̃Kt ,R̃B,Nt ,τKt ,τ

L
t ,Bt,Kt,Lt,Πt,(ait,cit,lit,νit)i)t≥0

W0, (24)

Gt +Bt−1 + rt (Bt−1 +Kt−1) + wtLt + Tt = Bt +
(

1− κ

2π
2
t

)
Yt − δKt−1, (25)

for all i ∈ I: ait + cit = (1 + rt)ait−1 + wty
i
tl
i
t + Tt, (26)

ait ≥ −ā, νit(ait + ā) = 0, νit ≥ 0, (27)

Uc(cit, lit) = βEt
[
Uc(cit+1, l

i
t+1)(1 + rt+1)

]
+ νit , (28)

l
i,1/ϕ
t = χwty

i
t, (29)

Πt(Πt − 1) = ε− 1
κ

(ζt − 1) + βEtΠt+1(Πt+1 − 1)Yt+1
Yt

Mt+1
Mt

, (30)

Kt +Bt =
ˆ
i
ait`(di), Lt =

ˆ
i
yitl

i
t` (di) , (31)

rt = (1− τKt )
r̃Kt Kt−1 +

(
R̃B,Nt−1

Πt − 1
)
Bt−1

At−1
, (32)

and subject to several other constraints (which are not reported here for space constraints): the
definition (2) of ζt, the definition (4) of Yt, the definitions (11) and (12) of after-tax wage wt, the
no-arbitrage constraint (10), the factor-price relationship (5), the pricing kernel definition (23),
and the positivity of labor and consumption choices, and initial conditions.

6Acharya and Dogra (2020), Acharya et al. (2020) and Bhandari et al. (2020) consider a risk-neutral pricing
kernel.
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The constraints in the Ramsey program include: the governmental and individual budget
constraints (25) and (26), individual credit constraint (and related constraints on νit) (27), Euler
equations for consumption and labor (28) and (29), the Phillips curve (30), market clearing
conditions for financial and labor markets (31), and the zero profit condition for the fund (32).
We have modified the zero-profit condition (9) to express it as a function of rt, R̃B,Nt , and
r̃Kt , which enables us to drop r̃t, rKt , and RB,Nt from the planner’s program. To simplify the
derivation of first-order conditions, we use some aspects of the methodology of Marcet and
Marimon (2019) which is sometimes called the Lagrangian method (Golosov et al., 2016), applied
to incomplete-market environments. We denote by βtλitωit the Lagrange multiplier of the Euler
equation of agent i at date t. Similarly, we denote by βtγt the Lagrange multiplier of equation
(30) of the Phillips curve. The Lagrange multiplier of the government budget constraint is βtµt.

As a final remark, the Ramsey program can be written in a recursive form. The state
space for the planner and all agents is actually very large. It is the joint distribution over past
value of Lagrange multipliers, wealth, productivity levels and the current aggregate state. This
inclusion of past values of Lagrange multipliers, which makes the problem difficult, stems from
the commitment of the planner not to surprise agents, such that their Euler equations hold. We
skip this representation as the discussion of first-order conditions in the sequential representation
is more intuitive.

3 An equivalence result

This section presents our main equivalence result and analyzes fiscal and monetary policies in
different institutional setups. The analysis is greatly simplified if one introduces a new concept,
the social valuation of liquidity for agent i denoted by ψit, and formally defined as:

ψit ≡ ωitUc(cit, lit)︸ ︷︷ ︸
direct effet

− Ucc(cit, lit)
(
λit − (1 + rt)λit−1

)
︸ ︷︷ ︸

effect on saving

(33)

−
(

(γt − γt−1) Πt (Πt − 1)− ε− 1
κ

γt (ζt − 1)
)
Ytω

i
tUcc(cit, lit)︸ ︷︷ ︸

effect on pricing kernel

.

The valuation ψit measures the benefit – from the planner’s perspective – of transferring an extra
unit of consumption to agent i, valued with weight ωit. This can be seen as the planner’s version
of the marginal utility of consumption for the agent.7 As can be seen in equation (33), this
valuation consists of three terms. The first is the marginal utility of consumption ωitUc(cit, lit),
which can be seen as the private valuation of liquidity for agent i. The second and third terms
can be seen as the internalization, by the planner, of the economy-wide externalities of this extra

7To simplify the notation, we keep the index i, but the sequential representation can be derived along the lines
of equation (17).
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consumption unit. More precisely, the second term in (33) takes into consideration the impact of
the extra unit consumption on saving incentives from periods t− 1 to t and from periods t to
t+ 1. An extra consumption unit makes the agent more willing to smooth out her consumption
between periods t and t + 1 and thus makes her Euler equation more “binding”. This more
“binding”constraint reduces the utility by the algebraic quantity Ucc(cit, lit)λit, where λit is the
Lagrange multiplier of the agent’s Euler equation at date t. The extra consumption unit at t
also makes the agent less willing to smooth her consumption between periods t− 1 and t and
therefore “relaxes” the constraint of date t− 1. This is reflected in the quantity λit−1.

These first two effects are present both in a real and a nominal framework. This is not the
case of the third effect, which is specific to the nominal framework and vanishes in the real one
(when Πt = ζt = 1 for all t). This effect, due to the third and last term of equation (33), reflects
how the extra consumption unit affects the pricing kernel of the agent and thereby the valuation
of monopoly profits.

In addition to ψit, another key quantity is the Lagrange multiplier, µt, on the governmental
budget constraint. The quantity µt represents the marginal cost in period t of transferring one
extra unit of consumption to households. Therefore, the quantity ψit − µt can be interpreted as
the “net” valuation of liquidity: this is from the planner’s perspective, the benefit of transferring
one extra unit of consumption to agent i, net of the governmental cost. We thus define:

ψ̂it = ψit − µt. (34)

The interpretation of first-order conditions is greatly clarified by expressing them using ψ̂it rather
than the multiplier on Euler equations, λit.

3.1 The flexible-price economy

Our main result below is that the planner reproduces the flexible-price allocations, if it is possible
to choose capital and labor taxes. We thus first analyze the flexible-price allocation, in which
the price adjustment cost is κ = 0.8 The Phillips curve does not constrain the planner’s choices
and its associated Lagrange multiplier is γt = 0. We can therefore follow here Chamley (1986)
and express all the planner’s constraints in post-tax price. The Ramsey equilibrium can thus be
derived using a narrower set of variables, which simplifies the algebra. Taxes are then recovered
from the allocation: The before-tax rates w̃t and r̃Kt can be deduced from equations (2) and (5)
with ζt = 1. Taxes τL and τK are obtained from the relationships between pre-tax and post-tax
rates (11) and (12). Finally, the nominal rate R̃B,Nt−1 can be deduced from relationship (32).

The resolution of the Ramsey program in Appendix A.2 shows that a solution to Ramsey
program is characterized by: (i) a Euler-like equation for each individual valuation ψ̂it and (ii)

8Within the literature on optimal fiscal policy in heterogeneous agent models (Werning, 2007; Bassetto, 2014;
Açikgöz et al., 2018; or Dyrda and Pedroni, 2018), one of our contributions is to introduce the concept of net social
value of liquidity, which eases the interpretation of the planner’s first-order conditions and numerical simulations.
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four first-order conditions related to the planner’s four instruments.
First, the set of first-order conditions with respect to individual savings for non-credit-

constrained agents can be written as:

ψ̂it = βEt
[
(1 + rt+1)ψ̂it+1

]
. (35)

Constrained agents i have no Euler equation, as ait = −ā, as a consequence λit = 0. Equation
(35) states that the net social value of liquidity should be smoothed out over time. It can be
interpreted as a Euler-like equation for the planner and generalizes the standard individual Euler
equation by taking into account the externalities of saving choices on interest rate.

The second first-order condition concerns the role of public debt and is written as follows:

µt = βEt
[
(1 + r̃Kt+1)µt+1

]
. (36)

We recall that µt is the Lagrange multiplier on the governmental budget constraint – which
therefore represents the shadow cost of one unit of consumption for the planner. Equation (36)
therefore states that the shadow cost of resources should be smoothed out over time. Again, as
with equation (35), equation (36) can be interpreted as a Euler-like equation, with one difference:
the interest rate is the before-tax interest rate on capital (r̃K) instead of the post-tax interest
rate of the fund (r) in equation (35). This condition was already discussed by Aiyagari (1995).

The third first-order condition deals with the post-tax interest rate rt and can be written as:
ˆ
i
ψ̂ita

i
t−1`(di) = −

ˆ
i
λit−1Uc(cit, lit)`(di). (37)

In absence of any side effect, the planner would choose the interest rate so as to set to zero
the aggregate net value of liquidity among all agents – weighted by agents’ asset holdings, such
that

´
i ψ̂

i
ta
i
t−1`(di) = 0, or equivalently to equalize the social liquidity valuation to its cost:´

i ψ
i
ta
i
t−1`(di) = µt

´
i a
i
t−1`(di). However, this is not possible since the planner needs to account

for the side effect of rt on the savings incentives, through the Euler equation. This effect is
proportional to the shadow cost of the Euler equation. Note that the sign of this shadow cost
depends on the planner’s perception of the savings quantity in the economy. It is positive when
the planner perceives excess savings in the economy, and negative the other way around (see
LeGrand and Ragot, 2020 for a lengthier discussion). In consequence, for instance, when there is
an excess quantity of savings in the economy, the total net valuation of liquidity is negative.

The fourth condition regarding the post-tax wage rate wt is:
ˆ
i
ψ̂ity

i
tl
i
t`(di) = ϕµt

(
Lt − (1− α) Yt

wt

)
. (38)

Similarly to equation (37), in absence of side effect for the wage rate, the planner would like to
set the aggregate net liquidity value – weighted by individual labor supply in efficient terms – to
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zero. However, this is not possible, since the planner has also to take into account the distortions
implied by wage variations on total labor supply and relatedly on output. These distortions are
proportional to the labor elasticity ϕ and vanish when labor supply is inelastic (ϕ = 0).

Finally, the fifth condition regarding the lump-sum transfer Tt is:
ˆ
i
ψ̂it`(di) = 0. (39)

Since there are no distortions implied by the lump-sum transfer, it is set such that the redistributive
effect is null.9

As a summary, the ψ̂it measure the net gain of transferring resources to agent i. The first-order
conditions (37)–(39) equalize the total gain for all agents (weighted by the relevant fiscal base) to
the cost of general-equilibrium distortions, for each fiscal instrument. It is interesting to connect
these first-order conditions with concepts used in the empirical literature on the evaluation of
public policy, as in Hendren and Sprung-Keyser (2020). They define the marginal value of public
fund (MVPF) for each instrument as the net total gain minus the general distortions costs. With
this wording, our first-order conditions state that the planner sets to 0 the MVPF for each fiscal
instrument.

3.2 Characterization of the steady-state capital tax

Before stating the equivalence result, we characterize the steady-state equilibrium capital tax in
this economy. This additional result is useful to clarify the existence conditions for equilibria with
positive steady-state capital taxes.10 Using the first-order conditions of Section 3.1, we derive
theoretical implications about the steady-state optimal fiscal policy. To denote steady-state
variables, we simply drop the subscript t. Our results are gathered in the following proposition.

Proposition 1 (Steady-state) In the interior steady-state of the Ramsey equilibrium:

1. the marginal productivity of capital is pinned down by the discount factor β:

1 + FK(K,L) = 1 + r̃K = 1
β
, (40)

2. the capital tax τK is positive and proportional to the aggregate credit-constraint severity:

τK =
´
i ν

i`(di)
(1− β)

´
i Uc(ci, li)`(di)

, (41)

where t νi is the Lagrange multiplier of credit constraint for agent i.
9We did not impose any sign restriction on the lump-sum transfer Tt. In the quantitative analysis of Section 5,

Tt will be positive.
10Straub and Werning (2020) show that these conditions are not obvious in a Chamley-Judd framework with

complete markets. We here show that a simple characterization can be obtained with occasionally binding credit
constraints
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The proof is in Appendix B. The first item in equation (40) of Proposition 1 is a direct
implication of the public debt Euler equation (36). As a consequence, the marginal productivity
of capital – and therefore the before-tax interest rate on capital (r̃K) – is determined by the
discount factor β only, as originally explained by Aiyagari (1995). This important restriction is
the so-called modified golden rule.

To the best of our knowledge, the second item in Proposition 1 is new in the literature. The
capital tax is positive and that its value is determined by the severity of credit constraints. The
quantity

´
i ν

i`(di) can indeed be interpreted as the aggregate shadow price of credit constraints
in the economy.11 The intuition for this result is that when credit constraints are binding for
some agents, credit-constrained agents cannot borrow as much as they would like to, while
non-constrained agents save too much to self-insure, as identified by Woodford (1990). Both
effects contribute to the creation of an oversupply of liquidity. To correct this oversupply,
the government raises the capital tax, which decreases the post-tax interest rate and thus the
incentives to save.12

A zero capital tax would correspond to credit constraints that do not bind for any agent – for
instance, if they are chosen to be below the natural borrowing limit, as defined by Aiyagari (1994).
However, in that case a stationary equilibrium cannot exist since it would imply β(1 + r) = 1
(where r is the agents’ saving rate) and the result of Chamberlain and Wilson (2000) would apply.
Conversely, as soon as a positive mass of agents is credit constrained, capital taxes are positive,
the post-tax return on capital is below 1/β, and the existence of a steady-state distribution
follows from Huggett (1993).13

In the quantitative exercise of Section 5, we will estimate the Pareto weights for the empirical
average capital tax to be optimal at the steady state.

3.3 The equivalence result

As a preliminary remark, observe that our monetary economy features two market imperfections.
The first imperfection is the imperfect competition between firms, which can yield a price markup
ζt strictly above one. The second imperfection is the Rotemberg inefficiency, which prevents
firms from setting their prices at no cost. The two imperfections are complementary. Indeed,
in the absence of Rotemberg inefficiency (i.e., κ = 0), firms’ profit maximization yields ζt = 1
and the markup inefficiency vanishes, as can be seen from the Phillips curve in equation (7).
Conversely, in the absence of imperfect competition, we have ζt = 1 and the Phillips curve implies

11The denominator in equation (41) is indeed bounded away from zero because the economy is finite, i.e., not all
marginal utilities can be simultaneously zero.

12This logic is discussed in Dávila et al. (2012). This paper differs from ours, because the authors analyze the
constrained optimality of the capital stock in a situation where the planner can change agents’ saving decisions
without distortion, while we focus on distorting fiscal instruments.

13Aiyagari (1995) also finds that the capital tax is positive in a similar environment without aggregate shocks.
See also Yared (2013) for a formal proof that a positive mass of credit-constrained agents can be optimal. Our
contribution is to connect the capital tax rate to the severity of credit constraints.
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the Rotemberg inefficiency has no role to play. The planner’s objective – in a monetary setup –
therefore includes minimizing the impact of these two inefficiencies.

We now show that linear taxes on capital and labor are two sufficient tools to offset these
two inefficiences along the business cycle, even when agents are heterogeneous. To do so, we first
solve for the optimal monetary and fiscal policies when the government has access to a full set of
fiscal tools. This program can be written as:

max
(wt,rt,w̃t,r̃Kt ,Bt,Tt,Kt,Lt,Πt,(ait,cit,lit)i)t≥0

W0, (42)

subject to the same equations as in the Ramsey program (24. Three observations can be
made. First, we have dropped the taxes τKt and τLt from the Ramsey program since, as in
the flexible-price case, they can be substituted by post-tax rates rt, rKt and wt (and recovered
from allocation). Second, as in the flexible-price case again, the pre-tax nominal rate R̃B,Nt ,
along with constraints (9) and (10), are also dropped since they do not play any role (and also
recovered from allocation). Finally, the before-tax rates w̃t and r̃Kt play a role only in the markup
coefficient ζt of equation (2) and in the factor price equation (5). The planner has thus two
independent instruments (r̃Kt or w̃t on one side and Πt on the other side) to address the two
monetary frictions of the economy. The planner can thus set r̃Kt or w̃t such that the markup
inefficiency vanishes (i.e., such that ζt = 1). The gross inflation rate is then set to 1 at all dates,
so as to neutralize the Rotemberg inefficiency. The program, with the full set of tools, can be
expressed as max(wt,rt,Bt,Kt,Lt,(ait,cit,lit)i)t≥0

W0, subject to exactly the same constraints as in the
flexible-price economy (because Πt = ζt = 1 at all dates). This thus leads to the same allocation
as in the real economy. We summarize this first result in the following proposition.

Proposition 2 (An equivalence result) When both labor and capital taxes are available, the
government exactly reproduces the flexible-price allocation and net inflation is null at all periods.

Proposition 2, formally proven in Appendix C.1, states that monetary policy is irrelevant
to manage inequality over the business cycle, as long as capital and labor taxes are available
instruments. Before discussing Proposition 2 further, one should note that it actually holds in a
much more general framework. The result can indeed be generalized to an environment where:

1. The period utility is general (and not GHH).

2. There is no fund and households actually choose their asset portfolio, investing without
intermediation in the real capital stock and in the nominal public debt.

3. There is a separate capital income tax for each of the two interest-bearing assets (capital
and public debt).
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In this more general setup, Proposition 2 is still valid. The proof is in Appendix C.2. The
generalization thus states that if a capital tax for each asset and a labor tax are available
instruments, then nominal prices are constant over the business cycle. A noteworthy aspect of
our extension is that if we allow for an actual portfolio choice, the equivalence result requires one
planner’s instrument per asset choice in addition to the labor tax. In our benchmark economy,
only capital and labor taxes are needed for the equivalence result of Proposition 2 to hold. It
does not rely on other planner’s instruments, such as lump-sum transfers or public debt. In
Appendix C.2, we also derive the planner’s first-order conditions, which allows us to identify
how wealth effects on the labor supply (due to a non-GHH utility function) affect the conditions
presented in Section 3.1.

Following the analysis of Kaplan et al. (2018) and Auclert (2019), monetary policy has
direct effects, due to price changes and indirect effects through general-equilibrium feedback.
Proposition 2 states that the effects achieved by monetary policy can be achieved by labor
and capital taxation. Loosely speaking, on the one hand, outcomes of the direct effects can be
replicated by the linear capital tax, which globally affects the return on all savings. On the other
hand, general equilibrium effects, affecting the real wage, can be replicated by the linear labor
tax, which creates a wedge between the marginal labor cost of the firm, determining their pricing
decision, and the labor income of households determining their labor supply decisions.

Finally, the equivalence result holds from time-0 onwards. As a consequence, it is valid both
in a time-0 perspective, when instruments are chosen at the initial period before convergence to
a long-run equilibrium and in a timeless perspective, when the economy is running for a long
period, such that the effect of initial conditions has vanished. We study both of these cases
quantitatively in Section 6.

The equivalence result of Proposition 2 is in the same vein as Correia et al. (2008) and
Correia et al. (2013) who also show that one can recover price stability if the planer has access
to a time-varying consumption tax. The inclusion of capital taxes (instead of consumption tax)
allows us to connect our result to the literature on optimal capital taxation.14

3.4 The economy with missing tools: Missing capital taxes

We now investigate how monetary policy is affected by missing fiscal instruments. We assume
here that the capital tax is constant and fixed at its optimal steady-state value τKSS . We perform
the same exercise for missing labor taxes in Appendix D.3, but this case is less interesting as we
find that optimal labor taxes barely move along the business cycle.15

14In addition, the inclusion of capital tax may be more relevant quantitatively, at least in the US (see Trabandt
and Uhlig, 2011).

15It could be possible to consider a vast number of incomplete sets of planner’s instruments (actually, 2m − 1,
where m is the number of instruments). Fixing capital tax may be the most natural option, since it can be argued
that this tax is set over the medium run, but not varying in the short run. Capital tax is a relatively recent tool,
introduced in 1921 in the US (Auten, 1999).
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With fixed capital tax, the planner’s program can be written as:

max
(wt,rt,R̃B,Nt ,w̃t,r̃Kt ,τ

L
t ,Tt,Bt,Kt,Lt,Πt,(ait,cit,lit)i)t≥0

W0,

subject to same equations as in case with the full set of instruments (Section 3.3), as well as
to the additional constraint τKt = τKSS . The main difference with the previous case is that we
cannot choose w̃t and r̃Kt to set ζt = 1 and fully offset markup inefficiency. Indeed, because
of the fixed capital tax rate and the factor price relationship (5), the pre-tax rate r̃Kt affects
both the markup ζt and the fund interest rate rt. Nominal inefficiencies cannot be removed, and
consequently, the inflation rate cannot be set to 1. The algebra is thus much more involved. We
derive the first-order conditions in Appendix A.3 and discuss here the main results.

Compared to the case where all instruments are available, we have two additional Lagrange
multipliers: one, denoted by Υt on the no-arbitrage condition (10), and another one, denoted by
Γt on the zero-profit condition (32) of the fund. The first-order condition for inflation is:

µtκ (Πt − 1) = − (γt − γt−1) (2Πt − 1)Mt + (Γt(1− τKSS)Bt−1 −Υt−1)
R̃B,Nt−1
YtΠ2

t

, (43)

where we recall that Mt is the pricing kernel. The left side captures the cost of an increase in
inflation in terms of output destruction. The right-hand side is the benefit of an increase in
current inflation in terms of the Phillips curve’s relaxation and of nominal interest rate.

Second, the choice of individual savings ait yields:

ψ̂it =

=extended real effect︷ ︸︸ ︷
βEt

[
(1 + rt+1)ψ̂it+1

]
+

=wedge rate effect︷ ︸︸ ︷
βEt

[
Γt+1

(
rt+1 − (1− τKSS)

(
R̃B,Nt

Πt+1
− 1

))]
, (44)

which is similar to the real case, except for two differences. First, the net social value of liquidity
ψ̂it now includes a term related to the variation of the pricing kernel due to one extra unit of
consumption (see the second line in expression (33)). This is why we refer to this term as an
“extended real effect”. Second, the fixed capital tax implies a wedge in interest rates coming from
the fund’s no profit condition. We refer to this aspect as a “wedge rate effect”.

21



Third, the choice of public debt yields the following first-order condition:

µt =

=extended real effect︷ ︸︸ ︷
βEt

[
µt+1

(
1− δ + ζ−1

t+1(r̃t+1 + δ)
(

1− κ

2 (Πt+1 − 1)2
))]

(45)

− αβEt
[(

(γt+1 − γt) Πt+1 (Πt+1 − 1) + ε− 1
κ

γt+1

)
Yt+1
Kt

Mt+1

]
︸ ︷︷ ︸

=Phillips curve effect

+ ε− 1
κ

βEt
[
γt+1

ζt+1Yt+1
Kt

Mt+1

]
︸ ︷︷ ︸

=markup effect

+β(1− τKSS)Et

[
Γt+1

(
R̃B,Nt

Πt+1
− 1− r̃Kt+1

)]
︸ ︷︷ ︸

=wedge rate effect

.

The first line states that public debt enables the planner to smooth out the cost of liquidity
for the government. This is similar to the flexible-price economy, except that the smoothing
also needs to account for nominal effects, and in particular the presence of the markup and of
the price adjustment cost, as well as the wedge between the capital rate and the public debt
rate. When monetary imperfections go away (ζt = 1 and Πt = 1), we exactly fall back on the
smoothing effect of the real economy (equation (36)), up to the wedge rate effect. The second line
is related to the impact of public debt on the Phillips curve through capital crowding-out and
output mitigation. The third term comes from effect on public debt of the markup inefficiency
– through capital crowding-out and interest rate. Finally, the fourth term is related to the wedge
rate effect, stemming from the difference in rates between public debt and capital.

The first-order condition related to the interest rate rt is:

ˆ
i
ψ̂ita

i
t−1`(di) = −

=extended real effect︷ ︸︸ ︷ˆ
i
λit−1Uc(cit, lit)`(di)−

=markup effect︷ ︸︸ ︷
ε− 1
κ

γt
Ytζt
rt

Mt +
=rate setting︷ ︸︸ ︷

ΓtAt−1. (46)

We can parallel the interpretation of the flexible-price case. Here, a second side effect is present
and is related to the impact of rt on price mark-up. Due to the lack of appropriate instruments,
the planner has to set the post-tax interest rate rt to manage at the same time the aggregate net
benefit of liquidity and mitigates the consequences of the markup inefficiency. The constraint
related to the relationship between the rates of the fund, of public debt and capital is also present.

Finally, equation (39) for Tt being unchanged, the choice of wt yields the following FOC:

ˆ
i
ωitψ̂

i
ty
i
tl
i
t`(di) =

=extended real effect︷ ︸︸ ︷
ϕµt

(
Lt − (1− α)ϕYt

wt

(
1− κ

2 (Πt − 1)2
))

(47)

+ (1− α)ϕ
wt

(
(γt − γt−1) Πt (Πt − 1) + ε− 1

κ
γt

)
YtMt.︸ ︷︷ ︸

=Phillips curve effect

The interpretation of equation (47) is similar to that of equation (46). Due to missing instruments,
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setting the post-tax wage rate must also account for the effect related to nominal rigidities
through the Phillips curve – in addition to the effect on labor supply and output already present
in the real case. Note that when labor is inelastic (ϕ = 0), these two effects are absent, since
labor supply – and thereby output – remain unaffected by wage variations. All in all, the planner
sets the post-tax wage to pursue both a real and a nominal objective: manage the aggregate net
benefit of liquidity (while internalizing the possible effects on aggregate labor supply) and mitigate
the nominal inefficiencies. These characterizations will be used in the simulation exercises below.

4 Truncating the model

The previous Ramsey problem cannot be solved with current simulation techniques. First reason,
there is no general algorithm to find the steady-state allocation. Indeed, the Ramsey equilibrium
is now a joint distribution across wealth and Lagrange multipliers, which is a high-dimensional
object. In addition, the planner’s instruments depend on the dynamics of this joint distribution
in a non-obvious way. For this reason, the methods using perturbation or simulation methods
around a well-identified steady-state cannot be used (as Reiter, 2009, Boppart et al., 2018,
Bayer et al. (2019) or Auclert et al., 2019). Moreover, optimizing over simple rules in the spirit
of Krusell and Smith (1998) may generate non-optimal rules as we could ignore the variables
underlying the rule for each instrument.

We provide a method to determine the steady-state allocation and to derive equations that
can be perturbated to simulate the dynamics for small aggregate shocks, elaborating on LeGrand
and Ragot (2020).16 The general idea of the method relies on the “truncation” of idiosyncratic
histories. We construct an aggregation of the Bewley model in which agents having the same
history over last N periods (where N is a fixed horizon) are aggregated into a single “agent”. By
construction, this aggregate agent has the same wealth as all agents having this history for the
last N periods. The heterogeneity in the original Bewley model among agents with the same
history of length N , is captured in our aggregate model through additional parameters (the
so-called “ξs”).17

This construction results in a so-called truncated model. In the absence of aggregate shocks,
the truncated model is an exact aggregation of the underlying Bewley model and does not
involve any simplifying assumption – thanks to the “ξs”. In the presence of aggregate shocks, the
truncated model can be simulated using standard perturbation methods and these allocations
can be shown to converge toward the allocations of the full-fledged model when the length of

16In LeGrand and Ragot (2020), we derive convergence properties and provide accuracy results. Bhandari et al.
(2020) is the only other method to compute Ramsey allocations with aggregate shocks in general cases. However,
to the best of our knowledge, it can be implemented only when credit constraints are not binding in equilibrium.

17Our aggregation method is related to the one of Werning (2015), except that Werning (2015) captures the
heterogeneity through a change in the discount factor, while we do it through the ξs. This choice simplifies the
solution of the Ramsey program, as all agents have the same discount factor.
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the truncation increases. Finally, the truncated model makes it possible to solve for the Ramsey
program.

In the quantitative Section 5, we show that the truncated economy is an accurate approx-
imation for relatively short truncation lengths by comparing outcomes to those of standard
simulation techniques (Reiter, 2009; Boppart et al., 2018).

We detail in the remainder of this section the truncation method in our monetary setup
– which is however not necessary to understand the quantitative results of Section 5.

4.1 The aggregation procedure

As explained in Section 2.6, the sequential representation characterizes the equilibrium of the full-
fledged model by sequences of functions depending on the full aggregate and idiosyncratic histories
of agents. Our aggregation procedure involves expressing the model based on so-called truncated
histories, which are N -length vectors yN = (y−N+1, . . . , y0) representing agents’ idiosyncratic
histories over the last N periods. The quantity N ≥ 0 is the truncation length. Loosely speaking,
we can represent the truncated history of an agent i whose idiosyncratic history is yt as:

yt = { . . . , y−N−2, y−N−1, y−N︸ ︷︷ ︸
ξ
yN

, y−N+1, . . . , y−1, y0︸ ︷︷ ︸
=yN

}, (48)

where the parameter ξyN captures the residual heterogeneity for the truncated history yN (as
further discussed below). We now turn to the different steps of the aggregation procedure.

First, the measure of agents with truncated history yN , denoted by SyN , can be computed
as SyN =

∑
yN∈YN SŷNΠŷNyN , where ΠŷNyN is the probability to switch from ŷN at t− 1 to yN

at t. It is equal to ΠŷNyN = 1yN�ŷNΠŷN0 y
N
0
, and thus to the probability to switch from current

state ŷN0 to current state yN0 if yN is a possible continuation of ŷN (denoted by yN � ŷN ).
Second, the model aggregation implies to assign consumption, saving and labor choices to

groups of agents with the same truncated history. For the sake of simplicity, we will write
truncated history for “the group of agents sharing the same truncated history”. Take the case of
a generic variable, denoted by Xt(yt, zt), where we make the dependence in yt and zt explicit.
The quantity assigned to truncated history yN is denoted by Xt,yN and equal to the average
value of X among agents with truncated history yN . Formally:

Xt,yN = 1
St,yN

∑
yt∈Yt|(ytt−N+1,...,y

t
t)=yN

Xt(yt,zt)θt(yt), (49)

where θt(yt) is recalled to be the measure of agents with history yt. Definition (49) can be applied
to the average consumption, the end-of-period saving, the labor supply and the credit-constraint
Lagrange multiplier respectively and lead to the quantities ct,yN , at,yN , lt,yN , and νt,yN .

Third, we compute the aggregate beginning-of-period wealth. Applying definition (49) to
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period-(t− 1) end-of-period wealth requires to account that agents transit from one truncated
history at t− 1 to another one at t. The beginning-of-period wealth ãt,yN for truncated history
yN becomes:

ãt,yN =
∑

ŷN∈YN

St−1,ŷN

St,yN
Πt,ŷN ,yNat−1,ŷN . (50)

Fourth, the aggregation of the different equations characterizing the equilibrium is rather
straightforward except for Euler equations – which involve non-linear marginal utilities. Indeed,
the marginal utility of consumption aggregation (u′(ct,yN )) is different from the aggregation of
marginal utility (u′

t,yN
): u′(ct,yN ) 6= u′

t,yN
. The ratio of these two scalars will be denoted by ξt,yN ,

which guarantee that Euler equations hold with aggregate consumption levels.18

4.2 The truncated model

We can now proceed with the aggregation of the full-fledged model. First, the aggregation of
individual budget constraints (15) using equations (49) and (50) yields the following equation:

at,yN + ct,yN = wty
N
0 lt,yN + (1 + rt)ãt,yN + Tt, for yN ∈ YN . (51)

The aggregation of Euler equations for consumption (18) and labor (19) yields:

ξyNUc(ct,yN , lt,yN ) = βEt

(1 + rt+1)
∑

ỹN�yN
Πt+1,yN ỹN ξỹNUc(ct+1,ỹN , lt+1,ỹN )

+ νt,yN , (52)

l
1/ϕ
t,yN

= χwty
N
0 . (53)

The system consisting of equations (51)–(53) is an exact aggregation of the full-fledged model
with aggregate shocks in terms of truncated idiosyncratic histories. This system characterizes
the dynamics of the aggregated variables ct,yN , at,yN , lt,yN and νt,yN without any approximation.

Finally, we express market clearing conditions (20) using aggregated variables:

Kt =
∑

yN∈YN
St,yNat,yN , Lt =

∑
yN∈YN

St,yN yyN lt,yN . (54)

The parameters ξs that appear in the aggregated Euler equations (52) are key in our method.
We show how to compute them using steady-state allocations and how these computations can
used to simulate the model in the presence of aggregate shocks.

Steady-state and computation of the ξs. At the steady state, the computations of the
parameters ξs can be done based on allocations. Indeed, we can compute the stationary

18Because the labor supply Euler equation is linear in productivity (see equation (19)), the aggregation of this
equation is straightforward.
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wealth distribution of the full-fledged model (using the individual equations) and identify credit-
constrained histories. We can then compute aggregate (steady-state) allocations, cyN , ayN , lyN
and νyN , using equations (49) and (50). Then, consumption Euler equations (52) can be inverted
to compute the preference parameters (ξyN )yN∈YN . Actually, this computation involves only
standard linear algebra and we provide a closed-form expression for the ξs – see equation (123)
in Appendix E.1.

The truncated model in the presence of aggregate shocks. To use our truncation
method in the presence of aggregate shocks, two further assumptions are needed.

Assumption A We make the following two assumptions.

1. The preference parameters (ξyN )yN remain constant and equal to their steady-state values.

2. The set of credit-constrained histories, denoted by C ⊂ YN , is time-invariant.

The resulting model (i.e., the aggregated model with Assumption A) is called the truncated
model. We therefore use the ξs twice: (i) once exactly to estimate them using the steady-state
allocation; (ii) once approximately to simulate the model in the presence of aggregate shocks.19

Finally, two properties are worth mentioning. First, by construction of the ξs, the allocations
of the full-fledged Bewley model and of the truncated equilibria coincide with each other at the
steady state. Second, truncated equilibrium allocations (in the presence of aggregate shocks)
can be proved to converge to those of the full-fledged equilibrium (and the ξs to 1), when the
truncation length N becomes increasingly long. Furthermore, from a quantitative perspective,
Section 5 shows that the ξs are an efficient tool to capture the heterogeneity within truncated
histories, even when the truncation length is not too large.

4.3 Ramsey program

Thanks to its finite state-space representation, the truncated model makes it possible to solve
the Ramsey program in the presence of aggregate shocks, which is a challenging task.20 If we
denote by (ωyN )yN∈YN the Pareto weights associated to history yN , the Ramsey program in the
truncated economy can be expressed as follows.

max
(wt,rt,r̃Kt ,R̃

B,N
t ,τKt ,τ

L
t ,Bt,Tt,Kt,Lt,Πt,(at,yN ,ct,yN ,lt,yN )

yN
)t≥0

E0

∞∑
t=0

βt
∑

yN∈YN
SyNωyN ξyNU(ct,yN , lt,yN )

, (55)

19Assuming that the ξyN are constant in the dynamics is equivalent to assuming that the distribution of agents
within truncated history is constant. This has the same spirit as assuming that the distribution within bins of
wealth is uniform in the histogram method of Reiter (2009), among others.

20Note that we derive the first-order conditions of the truncated model, and we do not truncate the first-order
conditions of the full-fledged Ramsey model. This ensures numerical stability, as the truncated model is “well-
defined”. It can be indeed considered as a model with limited insurance. See LeGrand and Ragot (2020) for this
expression and for the convergence of the FOCs of the truncated model toward the ones of the initial model.
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subject to aggregate Euler equations (52) and (53), aggregate budget constraint (51), aggregate
market clearing conditions (54), credit constraints at,yN ≥ −ā, as well as constraints that were
already present in the full-fledged Ramsey program: the governmental budget constraint (25), the
Phillips curve (30), the definition (2) of ζt, the one (4) of Yt, the ones (11) and (12) of after-tax
rates rt, rKt , RB,Nt and wt, the zero profit condition for the fund (9), the no-arbitrage constraint
(10), and the relationship (5) between factor prices. The only difference is that truncated pricing
kernel is now Mt =

∑
yN∈YN SyN ξyNωyNUc(ct,yN , lt,yN ).

As we did in Section 2.7, it is possible to use the tools of Marcet and Marimon (2019) to
rewrite the Ramsey program. The truncation adds no complexity to the formulation of the
planner’s objective. First-order conditions can similarly be derived as in the general case and
we obviously have the same equivalence results. The first-order conditions in the three cases
(flexible-price economy, no time-varying capital tax) are similar to the ones of Section 2.7 and we
do not repeat them for the sake of conciseness. These equations can be found in Appendix D.21

Computing the Pareto weights (ωyN )yN∈YN . We estimate Pareto weights, such that the
first-order conditions of the Ramsey program (55) are fulfilled at the steady-state for the actual
US tax system.22 More precisely, we choose Pareto weights such that the steady-state values
capital and labor taxes, as well as public debt and lump-sum transfers are equal to their empirical
counterparts (see Section 5.1 below for these values). However, the estimation involves Y N

Pareto weights (where Y = CardY and Y N amounts to 3125 in our quantitative exercise),
while there are only three constraints. The problem is therefore underidentified and there is no
uniqueness of such Pareto weights. To circumvent this difficulty, we choose among the admissible
weights those which minimize the distance to the equi-weighted case (where each agent in every
truncated history has the same weight, which is the Utilitarian social welfare function). Formally,
the weights solve min(ω

yN
)

∥∥∥(ωyN )yN − 1yN
∥∥∥

2
subject to

∑
yN ωyN = 1 and such that planner’s

first-order conditions hold.23 As we show in Appendix E.2, this computation pins down to simple
matrix algebra.

21A final aspect regarding the truncated Ramsey program is that it solutions can be shown to converge to the
solutions of the full-fledged Ramsey program (if they exist), when the truncation length N becomes infinitely long.
See LeGrand and Ragot (2020, Proposition 5). This convergence property is the parallel of the convergence result
regarding allocations of the competitive equilibrium.

22We actually follow here the methodology of the inverse optimal taxation literature, which estimates social
welfare functions that are consistent with observed fiscal systems (see Bargain and Keane, 2010; Bourguignon and
Amadeo, 2015; Heathcote and Tsujiyama, 2017; Chang et al., 2018, among others). This strategy ensures that we
investigate the dynamics around a quantitatively relevant steady state.

23In the previous expression, ‖·‖2 denotes the Euclidean norm, (ωyN )yN is the vector of Pareto weights, and
1yN the vector of masses of agents with history yN .
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5 Quantitative assessment

We now solve for optimal policies over the business cycle in a quantitatively relevant environment.
As we consider various environments to identify the economic mechanisms, we start here with
presenting a roadmap of our quantitative exercise.

1. We simulate the dynamics of the model assuming that the actual average US fiscal system
corresponds to the model optimal steady state.24 To do so, we calibrate the model to
reproduce a relevant wealth distribution for the average US fiscal system (Section 5.1) and
then we estimate Pareto weights for the optimal steady-state fiscal system to be the actual
average one in the US (Section 5.2).25

2. We check the accuracy of our method by comparing it to other simulation techniques in
Section 5.2.

3. We then solve for the optimal policy in the timeless perspective: we simulate the optimal
policy when the economy is close to its long-run steady state and is hit by aggregate shocks.

4. We simulate the model with the full set of instruments (capital and labor taxes, public debt,
lump-sum transfers), and check that inflation is constant. We compare the model outcomes
with those of a complete-market economy in Section 5.3 to understand how incomplete
insurance markets affect the dynamics of optimal fiscal policy.

5. We simulate the model when capital taxes do not vary along the business cycle in Section
5.4 and analyze the residual redistributive role of monetary policy.

6. We solve the time-0 program in a monetary model without capital and compare our results
to the literature in Section 6. The optimal policy is computed in initial periods, when the
planner is not constrained by past commitments and when the economy starts converging
to a long-run equilibrium.

5.1 The calibration and steady-state distribution

Preferences. The period is a quarter. The discount factor is β = 0.99 and the period utility
function log(c − χ−1 l1+1/ϕ

1+1/ϕ). The Frisch elasticity of labor supply is set to ϕ = 0.5, which is
the value recommended by Chetty et al. (2011) for the intensive margin in heterogeneous-agent

24We thus investigate the optimal dynamics of taxes, which is a different question from the optimal long-run
value of these taxes

25The well-defined optimal debt level comes from the incomplete-market structure with binding credit constraints,
where the Ricardian equivalence does not hold. When credit constraints are not binding and lump-sum taxes are
available, the level of public debt is not well determined (Bhandari et al., 2017a and Bhandari et al., 2020), as in
the representative agent economy (Aiyagari et al., 2002). See also Aiyagari and McGrattan (1998) or Açikgöz et al.
(2018) for contributions in the same environment.
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models. The scaling parameter is set to χ = 0.068, which implies normalizing the aggregate labor
supply, defined in (20), to 1/3.

Technology and TFP shock. The production function is Cobb-Douglas: Y = ZKαL1−α.
The capital share is set to α = 36% and the depreciation rate to δ = 2.5%, as in Krueger et al.
(2018) among others. The TFP process is a standard AR(1) process, with Zt = exp(zt) and
zt = ρzzt−1 + εzt , where εzt

iid∼ N (0, σ2
z). We use the standard values ρz = 0.95 and σz = 0.31% to

obtain a deviation of the TFP shock zt equal to 1% at a quarterly frequency (see Den Haan,
2010 for instance).

Idiosyncratic risk. We use a standard productivity process: log yt = ρy log yt−1 + εyt ,with
εyt

iid∼ N (0, σ2
y). We calibrate a persistence of the productivity process ρy = 0.99 and a standard

deviation of σy = 0.14. These values are in line with empirical estimates.26 This process generates
a realistic empirical pattern for wealth. First, the Gini coefficient of the wealth distribution
amounts to 0.77, in line with the data (see below). Second, the model implies an average
wealth-to-GDP ratio of 11.8 and an average capital-to-GDP ratio of 2.5. These two values are
in line with their empirical counterparts. Finally, the Rouwenhorst (1995) procedure is used to
discretize the productivity process into 5 idiosyncratic states with a constant transition matrix.

Taxes and government budget constraint. Fiscal parameters are calibrated based on the
computations of Trabandt and Uhlig (2011), who use the methodology of Mendoza et al. (1994)
on public finance data prior to 2008. This approach consists in computing a linear tax on capital
and on labor, as well as lump-sum transfers that are consistent with the governmental budget
constraint. Their estimations for the US in 2007 yield a capital tax (including both personal
and corporate taxes) of 36%, a labor tax of 28% and lump-sum transfers equal to 8% of the
GDP. This affine structure (lump sum transfers and linear marginal tax rates) is often used in
the literature because it enables to properly reproduce the amount of redistribution in the US,
as shown for instance by Heathcote et al. (2017) and Dyrda and Pedroni (2018).

This fiscal system generates two untargeted outcomes. First, it implies a public debt-to-GDP
ratio equal to 60%, which is very close to the value of 63% estimated by Trabandt and Uhlig
(2011). Second, it also implies a public spending-to-GDP ratio equal to 12.4%. This value is
consistent with other quantitative investigations (Bhandari et al., 2017b), even though a little
bit low compared to the postwar value, which has decreased to 14.1% in 2017, from 17% in the
1970s.

26For instance, Krueger et al. (2018) estimate a more general process with an additional transitory process. The
implied AR(1) process generates a standard deviation equal to σy = 0.13.
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Monetary parameters. The monetary friction is captured by two parameters. The first is
the elasticity of substitution across goods ε. The second is the price adjustment cost κ, in the
Rotemberg representation. We follow the literature and set ε = 6 and κ = 100 (see Bilbiie and
Ragot, 2020 for a discussion and references).

Table 1 provides a summary of the model parameters.

Parameter Description Value

Preference and technology

β Discount factor 0.99
α Capital share 0.36
δ Depreciation rate 0.025
ā Credit limit 0
χ Scaling param. labor supply 0.068
ϕ Frisch elasticity labor supply 0.5

Shock process

ρz Autocorrelation TFP 0.95
σz Standard deviation TFP shock 0.31%
ρy Autocorrelation idio. income 0.99
σy Standard dev. idio. income 14%

Tax system

τK Capital tax 36%
τL Labor tax 28%
T Transfer over GDP 8%

B/Y Public debt over yearly GDP 60%
G/Y Public spending over yearly GDP 12.4%

Monetary parameters

κ Price adjustment cost 100
ε Elasticity of sub. 6

Table 1: Parameter values in the baseline calibration. See text for descriptions and targets.

Steady-state equilibrium distribution. We first simulate a Bewley model (i.e., without
aggregate shocks). In Table 2, we report the wealth distribution generated by the model and
compare it to the empirical distribution. We compute a number of standard statistics – listed in
the first column – including the quintiles, the Gini coefficient, and 95-100 intercentiles.

The empirical wealth distribution reported in the second and third columns of Table 2 is
computed using two sources, the PSID for the year 2006 and the SCF for the year 2007. The
fourth column reports the wealth distribution generated by our model. Overall, the distribution
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of wealth generated by the model is quite similar for the two replacement rates and is close to
the data. In particular, the model does a good job in matching the wealth distribution with a
high Gini of 0.77. The concentration of wealth at the top 1% of the distribution is higher in the
data than in the model. It is known that additional model features must be introduced to match
the high wealth inequality in the US, such as heterogeneous discount rates, as in Krusell and
Smith (1998), or entrepreneurship, as in Quadrini (1999).

Data Model

Wealth statistics PSID, 06 SCF, 07

Q1 −0.9 −0.2 0.0
Q2 0.8 1.2 0.1
Q3 4.4 4.6 3.5
Q4 13.0 11.9 15.1
Q5 82.7 82.5 81.3

Top 5% 36.5 36.4 37.8
Top 1% 30.9 33.5 10.7
Gini 0.77 0.78 0.77

Table 2: Wealth distribution in the data and in the model.

5.2 Truncation and estimating Pareto weights

We now construct the truncated model. We use a truncation length of N = 5. This implies that
we consider Y N = 55 = 3125 different truncated histories.

Computing the ξs. For each history, we compute the coefficients (ξyN )yN such that the
truncated allocations are equal to the truncation of allocations in the Bewley model (see Section
4). We find that the standard deviation across histories is std(ξyN ) = 0.13.

Comparing with other solution techniques. We choose the number of truncated histories
such that the simulation outcomes using our truncation method are close to other simulation
methods. The two standard alternative solution methods are the histogram method developed
by Rios-Rull (2001), Reiter (2009), and Young (2010) and IRFs analysis by Boppart et al. (2018)
and Auclert et al. (2019). We simulate the model with the previous calibration, assuming no
public spending with three different methods. The results are provided in Appendix F, and are
shown to be very close. For instance, the standard deviation of GDP is 1.71% with Reiter’s
method and 1.64% for our truncation method. See also LeGrand and Ragot (2020) for the same
exercise in a different environment.
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Estimating Pareto weights. We estimate the value of Pareto weights, such that the first-
order conditions of the planner are fulfilled at the steady state for the actual US tax system. See
Section 4.3 for the formal algebraic characterization. We estimate 55 different Pareto weights,
due to the truncation with N = 5. We find that weights are increasing with productivity. The
weight of agents with the highest productivity level is approximately twice that of agents with
the lowest productivity level.

5.3 Dynamic of the fiscal system with a complete set of instruments

We now present the dynamics of the fiscal system after a technology shock in the incomplete-
market economy (henceforth, IM stands for incomplete market). We solve the model when the
planner has the full set of fiscal instruments (τK , τL, T , and B). We know from Proposition 2
that inflation does not play any role in this case, and the allocation is the same as the flexible-
price one. To understand the effect of heterogeneity in this environment, we compare the IRFs
in the IM economy with those of the complete-market economy (henceforth, CM stands for
complete-market).

In the CM economy, the households’ side is represented by a representative agent.27 This
environment is studied in a vast literature (Chari and Kehoe, 1999; Aiyagari et al., 2002; Farhi,
2010; Bhandari et al., 2017a, among others). Our calibration of the CM economy relies on
the same parameters as those of Table 1, ensuring that the steady-state GDP and aggregate
consumption are the same in the CM and IM economies.28 Results are plotted in Figure 1.
Each panel of Figure 1 reports the proportional change for the variable under consideration, in
percentage points, except for tax rates, for which the absolute variation is reported. For instance,
Panel 1 reports a persistent fall in TFP for 100 periods, after a fall of 1% on impact.

Overall, the comparison of the dynamics of aggregate quantities (Consumption, Panel 2;
Capital, Panel 3; GDP, Panel 4) shows that the IM and CM economies exhibit very similar
behavior along those dimensions. The main difference between the two economies concerns
fiscal instruments. The capital tax is very volatile and labor taxes are very smooth in the CM
economy, which is a standard result in this literature (Chari and Kehoe, 1999 and Farhi, 2010).
The planner uses the capital tax to front-load all adjustments, such that the public debt jumps
on a path consistent with zero tax on both capital and labor. As the public debt is negative, the
decrease in public debt means that the planner actually further accumulates assets to pay for
public spending, because it needs to compensate for lower governmental revenues (due to the
negative shock). This very high capital tax volatility is known to be an unappealing feature of
the CM economy.

27In our setup, this corresponds to the limit case when the truncation length is set to N = 1 and ξyN = 1.
28In the CM economy, the standard outcome is that the government ends up holding a negative debt (i.e., it

holds a part of the capital stock) in order to reduce distortionary taxation. This economy is of interest to compare
the variations of the policy instruments along the business cycle.
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Figure 1: Comparison between the complete-market economy (red dashed line) and the incomplete-
market economy with all instruments (black solid line).

In the IM economy, the fiscal policy sharply differs. First, the capital tax is much less volatile.
It is actually 100 times less volatile. This result shows that incomplete markets contribute to
solving the capital tax volatility puzzle. Indeed, due to precautionary saving motive, it is very
costly for the planner to raise very sharply the capital tax and thereby wipe out agents’ savings.
A consequence of this very moderate increase in the capital tax is that public debt increases
(and public debt is actual debt in the IM economy) to smooth out the impact of the negative
TFP shock on public finance. The governmental budget adjustment is actually performed by
a moderate increase in the labor tax (around 0.1%) for quite a long period. Finally, inflation
remains constant and null, as is consistent with Proposition 2.

5.4 Dynamics of the fiscal system without time-varying capital tax

We now turn to the dynamics of the IM economy, when the capital tax is not time-varying and
is set to its steady-state value. IRFs are reported in Figure 2 and compared to those of the IM
economy with the full set of instruments. As in Figure 1, the dynamics of aggregate quantities
(aggregate consumption, capital stock and GDP, in panels 2, 3 and 4, respectively) have a very
similar pattern in the two IM economies. The most salient difference is that keeping a constant
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Figure 2: Comparison between the IM economy with all instruments (black solid line) and the
IM economy with a fixed capital tax (blue dashed line).

capital tax generates a public debt that is more countercyclical as well as a slightly higher labor
tax. Indeed, due to the distortions implied by the labor tax, its increase remains very limited
and smoothed out through time, which is permitted by a higher public debt. Regarding inflation
(Panel 12), it can be observed that it barely moves, even when the capital tax is constant.29

These findings are confirmed by second-order moments that can be found in Table 3. More
precisely, we report in Table 3 the unconditional first- and second-order moments for several key
variables, in three economies. The first is the representative agent economy (CM). The second is
the IM economy with the full set of instruments (Full). The third is the economy without capital
taxes (No cap. tax), discussed in Section 5.4.

For each variable, we report the steady-state value (labeled “Mean”) and the normalized
standard deviation, equal to the standard deviation divided by the mean (labeled “Std”), except
for taxes for which the standard deviation is reported. The second part of the table reports
correlations. First, we can observe that Table 3 confirms the IRFs regarding aggregate variables.
Their mean and standard deviations are very close in the CM and IM economies. Second, the
main difference, as for IRFs again, lies in the volatility of taxes and of the behavior of public
debt, which significantly differs. Finally, we observe that inflation volatility is low even when

29Nuño and Thomas (2020) find a similar result in a different environment in the same timeless perspective.
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capital tax is not time-varying when κ = 100 (third column).30

CM Full No cap.tax

C Mean 0.7543 0.7542 0.7542
Std 0.0259 0.0266 0.0269

K Mean 11.0557 11.0536 11.0535
Std 0.0268 0.0270 0.0288

Y Mean 1.1760 1.1759 1.1759
Std 0.0264 0.0268 0.0274

L Mean 0.3334 0.3334 0.3334
Std 0.0088 0.0094 0.0098

τK Mean 0.0009 0.3600 0.3600
Std 0.8855 0.0145 0.0000

τL Mean 0.0000 0.2800 0.2800
Std 0.0000 0.0016 0.0015

B Mean −10.9327 2.8435 2.8424
Std 0.0146 0.0462 0.0541

T Mean 0.0000 0.0941 0.0941
Std 0.0000 0.0610 0.0637

π Mean 0.0000 0.0000 0.0000
Std 0.0000 0.0000 0.0007

Correlations

corr(τK , Y ) −0.2085 −0.4868 0.0000
corr(τL, Y ) 0.9273 −0.6374 −0.9249
corr(B, Y ) −0.8349 −0.7592 −0.8291
corr(T, Y ) 0.0000 0.6523 0.7796
corr(C, Y ) 0.9673 0.9691 0.9755
corr(Y, Y−1) 0.9776 0.9781 0.9785
corr(B,B−1) 0.9992 0.9996 0.9994

Table 3: First- and second-order moments for key variables, in the four economies (CM: complete
market; Full: IM with full fiscal set; No cap. tax: IM with fixed capital tax. See text for details.

From IRFs and second-order moments, we conclude that, compared to CM, the IM economy
implies a sharp reduction in the volatility of the capital tax, as well as a countercyclical and
more volatile public debt. In addition, although inflation could be a partial substitute for the
missing capital tax, the associated distortions (on savings and output destruction) are too high
for the planner to actively rely on inflation for realistic price-adjustment costs.

30We must implement unrealistically low price adjustment cost to obtain a high optimal inflation volatility. For
instance, we find substantial inflation volatility for κ = 0.1, but this is not the case for κ = 10 or higher.
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6 When is inflation optimal? Timeless and time-0 problem

We conduct here a thorough comparison of our results to those of the literature regarding optimal
monetary policy in HANK models. Indeed, Acharya et al. (2020), Bhandari et al. (2020), and
Nuño and Thomas (2020) find significant deviation from price stability in some cases. As we will
see, this is not related to different resolution techniques, but to the assumption about available
fiscal instruments and to the investigation of a time-0 rather than a timeless problem.

As a preliminary remark, the results of Proposition 2 are valid in all periods. As a consequence,
deviation from price stability is obtained only for missing fiscal tools (capital or labor tax), both
in the timeless and the time-0 perspectives. To compare our results with those of the literature,
we focus on a no-capital economy, which is a special case of the previous setup. Furthermore, in
our time-0 exercise, we allow the initial wealth distribution to differ from the steady-state one, as
in Bhandari et al. (2020). Income volatility can also be time-varying, as in Acharya et al. (2020).

6.1 Setup and calibration

We consider the same model as in Section 5, with the following calibration, to simplify the
comparison with the literature. First, we have α = 0 (no capital) and τKt = τLt = Bt = Gt = 0 in
all periods (no fiscal system, as in the literature). The governmental budget constraint implies
that the lump-sum transfers are equal to the firms’ monopoly profits: Tt = (1− ζt − κ

2π
2
t )Yt, as

assumed by Acharya et al. (2020), and Bhandari et al. (2020) in their baseline model.31 This
specification means that transfers can vary along the business cycle but they are null at the
steady state, since the steady state still features zero inflation (π = 0) and no distortion (ζ = 1).
The monetary parameters driving the cost of inflation are ε = 10 and κ = 30. This generates a
slope of the Phillips curve that is comparable to the high value of Acharya et al. (2020).

The credit limit ā is set equal to six times the steady-state quarterly wage w which implies
that the share of credit-constrained agents amounts to 18% in the long run, which is a realistic
number (Jappelli, 1990). Because the credit limit is not null and the total net supply of debt
is still zero, some agents will be net borrowers, while others will be net lenders. Unexpected
inflation thus redistributes wealth from creditors and lenders (which is the so-called Fisher effect).

We assume that the initial (nominal) wealth distribution differs from the steady-state one,
as in Bhandari et al. (2020). More precisely, the initial distribution is a mean-preserving
transformation of the steady-state distribution: the standard deviation of the initial distribution
is 1% higher than the steady-state one. This implies that the economy features higher wealth
inequality in the initial period than in the long run – which generates an additional motive for
redistribution.

31More specifically, Bhandari et al. (2020) assume that agents may have some equity but they cannot trade it.
As a consequence, agents can receive different shares of aggregate dividends. We thus assume that agents hold the
same amount of equity.
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The other preference parameters (β, δ, χ and ϕ) and parameters driving the shock process
are set to the same values as in our baseline calibration of Table 1.

6.2 Resolution and results

We consider two different Ramsey problems: (i) the timeless perspective that we considered in
Section 5; (ii) the time-0 problem, also considered in the literature.

Resolution. In both cases, we consider a truncation length set to N = 5 and we check that
results are not overly affected by the length of the truncation. In our baseline simulation,
the economy is hit at time 0 by an unexpected negative productivity shock of −1% with an
autocorrelation of 0.95. Because we consider an initial distribution that differs from the steady-
state one, we cannot rely on a perturbation resolution. We compute a transition path under
perfect foresight by solving a non-linear system (MIT shock). We detail the strategy in Appendix
G.1. In the case of the timeless perspective, we set the initial values of Lagrange multipliers for
agents’ Euler equations and for the Phillips curve to their steady-state values. In the case of the
time-0 problem, we set these initial values to zero, reflecting the fact that the planner at time 0
is not constrained by past commitments.

Timeless perspective. The results are plotted in Figure 3, where we report the dynamics
of the aggregate shock Z, of inflation π and of aggregate consumption C. The red-dashed line
corresponds to the timeless perspective. It can be observed that inflation barely moves in initial
periods and in the dynamics, while aggregate consumption incurs a sharp decline, as almost no
redistribution occurs across agents. Even with a total absence of fiscal system, and stronger
motives for redistribution (due to the initial wealth distribution), this empirical exercise confirms
our result of Section 5: in a timeless perspective, the quantitative role of inflation is very limited.
This finding confirms in a more general setting the claim of Nuño and Thomas (2020) stating
that the time-0 problem is necessary to generate a significant deviation from price stability.

Figure 3: Dynamics of the economy after a negative technology shock (in percent). Z and C are
in proportional deviation to steady-state values, while π is reported in level deviation.
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Time-0 problem. The results are also plotted in Figure 3. The black solid line corresponds
to the same calibration as in the timeless perspective, but for a time-0 problem. The paths are
very different in timeless and time-0 economies. In time-0 economy, inflation increases by more
than 1% on impact – but we do not observe any persistent deviation from zero inflation. This
redistributes wealth from wealth-rich agents to wealth-poor agents, as the real interest rate falls
unexpectedly on impact (Fisher effect). This wealth transfer towards agents with high marginal
propensity to consume (in particular credit-constrained agents) contributes to limit the decrease
in aggregate consumption, compared to the timeless case.

To better understand the role of the different elements, we have also conducted some
comparative static exercise. Numerical results are provided in Appendix G. As a summary, our
findings corroborate the existing literature. More precisely, the increase in inflation on impact
is higher when: (i) the cost of inflation (κ) diminishes (as in Acharya et al., 2020), (ii) the
idiosyncratic risk is countercyclical (as in Acharya et al., 2020 also), and (iii) when the credit
limit ā becomes looser (agents can borrow more). This last effect is reminiscent of the importance
of the Fisher effect pointed out in Nuño and Thomas (2020) and also connects with the results
Bhandari et al. (2020), where credit constraints do not bind.

To conclude this comparison section, when fiscal tools are missing, inflation is used to transfer
wealth across agents but only when the inflation can be used as a surprise. We do not observe
any persistent deviation from zero inflation since inflation is used only in the initial periods.

7 Conclusion

We derive optimal fiscal-monetary policy with commitment in an economy with incomplete
insurance markets, nominal frictions, and aggregate shocks. We find that market incompleteness
considerably reduces the volatility of capital tax, but increases the counter-cyclicality of public
debt after technology shocks. In the long run (in a timeless perspective), optimal monetary policy
has little role for redistribution, even when the capital tax remains fixed along the business cycle.

Departing from the timeless perspective and considering a time-0 problem can generate
significant deviations from price stability but only when taxes are constrained to remain constant.
However, this situation generates only a temporary deviation from price stability, and no persistent
deviation ever occurs in our experiments.
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Appendix

A Computing the FOCs of the full-fledged Ramsey program

This section is organized in three parts. In Section A.1, we transform the Ramsey program by
including in the planner’s objective the Euler equations. In Section A.2, we derive the FOCs of
the Ramsey program in the flexible-price economy, while in Section A.3, we derive those when
the capital tax is fixed to its steady-state value.

A.1 Transforming the Ramsey program

The objective of the Ramsey program (22)–(32) can be rewritten as:

J = E0

∞∑
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ˆ
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where we define U it = U(cit, lit), and U ic,t = Uc(cit, lit) (and later, U il,t = Ul(cit, lit), U icc,t = Ucc(cit, lit),
and U icl,t = Ucl(cit, lit)). In the previous expression, we have used the fact that when the credit
constraint is binding for agent i at period t, (νit > 0), then there is no Euler equation to consider
(λit > 0). With γ−1 = 0, we obtain after some manipulations:
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Using (56), the Ramsey program (24)–(31) can now be expressed as: max J on
(
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)
t≥0, subject to the same set of constraints, except the indi-

vidual Euler equations for consumption (28) and the Phillips curve (30). Note that we could also
write the Ramsey program using the sequential representation (as in equations (17)), but at the
cost of tedious notation.

A.2 First-order conditions for the flexible-price economy

The flexible-price allocation is the solution of max(wt,rt,Bt,Kt,Lt,Tt,(ait,cit,lit)i) J, subject to:
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Bt + Yt − δKt−1 = Gt +Bt−1 + rt (Bt−1 +Kt−1) + wtLt + Tt, and Kt =
ˆ
i
ait`(di)−Bt,
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with κ = 0 and γt = 0 for all t, ζt = 1, Πt = 1 for all t (because prices are flexible).

Derivative with respect to wt: the labor tax. We have:

0 =
ˆ
i
ωit

(
U ic,t

∂cit
∂wt

+ U il,t
∂lit
∂wt

)
`(di) + µt

(
∂Yt
∂wt
− Lt − wt

∂Lt
∂wt

)

−
ˆ
i

(
λit − (1 + rt)λit−1

)(
U icc,t

∂cit
∂wt

+ U icl,t
∂lit
∂wt

)
`(di).

We have U il,t = −wtyitU ic,t and U ic,t
∂cit
∂wt

+ U il,t
∂lit
∂wt

= U ic,t

(
∂cit
∂wt
− wtyit

∂lit
∂wt

)
= U ic,tχ

ϕwϕt
(
yit
)ϕ+1.

Similarly, U icc,t
∂cit
∂wt

+ U icl,t
∂lit
∂wt

= U icc,tχ
ϕwϕt

(
yit
)ϕ+1. Furthermore:

∂Lt
∂wt

=
ˆ
i
yit
∂lit
∂wt

`(di) = ϕ

ˆ
i
yit
lit
wt
`(di) = ϕ

wt
Lt, and

∂Yt
∂wt

= (1− α) ϕ
wt
Yt.

Using the definition of ψ̂i in (34), we obtain:

µtϕ

(
Lt − (1− α) Yt

wt

)
=
ˆ
i
ψ̂ity

i
tl
i
t`(di).

Derivative with respect to rt: the capital tax. Using ∂cit
∂rt

= ait−1 and ∂lit
∂rt

= 0, we have:

0 =
ˆ
i
(ωitU ic,t − (λit − (1 + rt)λit−1)U icc,t)ait−1`(di) +

ˆ
i
λit−1U

i
c,t`(di)− µt(Kt−1 +Bt−1).

We therefore obtain:
ˆ
i
λit−1U

i
c,t`(di) +

ˆ
i
ψ̂ita

i
t−1`(di) = 0. (57)

Derivative with respect to Bt: the public debt. We get: 0 = µt − βEt [µt+1(1− δ)] +
βEtµt+1

∂Yt+1
∂Bt

. Using (3), we have:Kt−1
Lt

= α
1−α

w̃t
r̃Kt +δ and 1 = 1

Zt

(
r̃Kt +δ
α

)α (
w̃t

1−α

)1−α
. We deduce

that: ∂Yt+1
∂Bt

= −(r̃Kt+1 + δ) and obtain 0 = µt − βEt
[
µt+1(1− δ + r̃Kt+1 + δ)

]
, or:

µt = βEt
[
µt+1

(
1 + r̃Kt+1

)]
. (58)

Derivative with respect to ait: the net saving of consumers. We have, since ∂lit
∂ait

= 0:

βEt
[
µt+1(rt+1 + δ − ∂Yt+1

∂ait
)
]

=
ˆ
i
ωitU

i
c,t

∂cit
∂ait

`(di)−
ˆ
i

(
λit − (1 + rt)λit−1

)
U icc,t

∂cit
∂ait

`(di)

+βEt
ˆ
i
ωitU

i
c,t+1

∂cit+1
∂ait

`(di)−
ˆ
i

(
λit − (1 + rt)λit−1

)
U icc,t+1

∂cit+1
∂ait

`(di).
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This yields using ∂cit
∂ait

= −1, ∂c
i
t+1
∂ait

= 1 + rt+1, and ∂Yt+1
∂ait

= r̃Kt+1 + δ:

ψit = βEt
[
(1 + rt+1)ψit+1

]
+ βEt

[
µt+1

(
r̃Kt+1 − rt+1

)]
.

Observing that µt = βEt
[
µt+1

(
1 + r̃Kt+1

)]
(equation (58)), we obtain using the definition of ψ̂i:

ψ̂it = Et
[
(1 + rt+1)ψ̂it+1

]
. (59)

Derivative with respect to Tt. We obtain:
ˆ
i
ψ̂it`(di) = 0. (60)

A.3 First-order conditions for the economy with fixed capital taxes

Because pre- and post-tax rates cannot be set independently, nominal frictions cannot be
suppressed in this setup. We have two additional Lagrange multipliers: (i) βtΥt on the no-
arbitrage condition (10), and (ii) βtΓt on the zero-profit condition (32) of the fund. In this
context, the planner’s objective can be written as:

J = E0

∞∑
t=0

βt
ˆ
i
ωitU(cit, lit)`(di)− E0

∞∑
t=0

βt
ˆ
i
(λit − (1 + rt)λit−1)Uc(cit, lit)`(di)

− E0

∞∑
t=0

βt(γt − γt−1)Πt(Πt − 1)Yt
ˆ
i
ωitU

i
c,t`(di) + ε− 1

κ
E0

∞∑
t=0

βtγt(ζt − 1)Yt
ˆ
i
ωitU

i
c,t`(di)

+ E0

∞∑
t=0

βtµt

(
Bt − (1− δ)Bt−1 −Gt − Tt + (1− κ

2 (Πt − 1)2)Yt − (rt + δ)
ˆ
i
ait−1`(di)− wtLt

)

+ E0

∞∑
t=0

βt−1Υt−1(
R̃B,Nt−1

Πt
− (1 + r̃Kt )) + E0

∞∑
t=0

βtΓt(rtAt−1 − (1− τKSS)(r̃Kt Kt−1 + (
R̃B,Nt−1

Πt
− 1)Bt−1)

)
.

Derivative with respect to R̃B,Nt . We obtain:

(1− τK)Et
[Γt+1

Πt+1

]
Bt = ΥtEt

[ 1
Πt+1

]
. (61)

Derivative with respect to r̃Kt . Using the definition of ζt in equation (2), we obtain: Yt ∂ζt∂r̃Kt
=

1
αZt

(Kt−1
Lt

)1−αZtK
α
t L

1−α
t = Kt−1

α . This yields the following first-order condition:

Υt−1 + Γt(1− τKSS)(At−1 −Bt−1) =ε− 1
ακ

γtKt−1Mt.
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Derivative with respect to Πt. We have:

0 = µtκ (Πt − 1) + (γt − γt−1) (2Πt − 1)Mt +
(
Γt
(
1− τK

)
Bt−1 −Υt−1

) R̃B,Nt−1
YtΠ2

t

. (62)

Derivative with respect to rt. We obtain:

0 =
ˆ
i
ψ̂ita

i
t−1`(di) +

ˆ
i
λit−1ω

i
t−1U

i
c,t`(di) + ΓtAt−1. (63)

Derivative with respect to wt. Using the definitions (1) and (20) of Yt and Lt, as well as
individual budget constraint (26), we obtain:

∂Lt
∂wt

=
ˆ
i
yit
∂lit
∂wt

`(di) = ϕ

ˆ
i
yit
lit
wt
`(di) = ϕ

wt
Lt,

Ucc(cit, lit)
∂cit
∂wt

+ Ucl(cit, lit)
∂lit
∂wt

= U icc,ty
i
tl
i
t, and

∂Yt
∂wt

= (1− α) ϕ
wt
Yt.

The definition (2) of ζt also implies: ∂ζt
∂wt

= −(1− α)ζt ϕwt . Using previous computations and
the definition of ψ̂, we obtain after some algebra:

µtϕ

(
Lt − (1− α) Yt

wt

(
1− κ

2 (Πt − 1)2
))

=
ˆ
i
ψ̂ity

i
tl
i
t`(di) (64)

− (1− α)ϕ
wt

(
(γt − γt−1) Πt (Πt − 1) + ε− 1

κ
γt

)
Yt

ˆ
i
ωitU

i
c,t`(di).

Derivative with respect to Bt: the public debt. The financial market clearing condition
(20), Yt = ZtK

α
t−1L

1−α
t implies: ∂Yt+1

∂Bt
= −αYt+1

Kt
= −ζ−1

t+1(r̃Kt+1 + δ), where the second equality

comes from equations (1)–(2). It also implies: ζt = 1
αZt

(
r̃Kt+1 + δ

)( ´
i a
i
t−1`(di)−Bt−1

Lt

)1−α
and

∂ζt+1
∂Bt

= −(1− α) ζt+1
Kt

. We obtain after some manipulation:

µt = βEt
[
µt+1

(
1− δ + ζ−1

t+1(r̃Kt+1 + δ)
(

1− κ

2 (Πt+1 − 1)2
))]

(65)

− αβEt
[(

(γt+1 − γt) Πt+1 (Πt+1 − 1) + ε− 1
κ

γt+1

)
Yt+1
Kt

Mt+1

]
+ ε− 1

κ
βEt

[
γt+1

ζt+1Yt+1
Kt

Mt+1

]
+ β

(
1− τK

)
Et

[
Γt+1

(
R̃B,Nt

Πt+1
− 1− r̃Kt+1

)]
.

Derivative with respect to ait: the net saving of consumers. Note that using individual
budget constraints (26), we have: ∂cit

∂ait
= −1, and ∂cit+1

∂ait
= 1 + rt+1. Furthermore, using

equations (2)–(5) and the financial market clearing condition (20), we obtain: ∂Yt+1
∂ait

= αYt+1
Kt

=

ζ−1
t+1(r̃Kt+1 + δ), and ∂ζt+1

∂ait
Yt+1 = 1−α

α (r̃Kt+1 + δ). We obtain then the following first-order condition
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for unconstrained agents iwhich yields, by difference with (65):

ψ̂it = βEt
[
(1 + rt+1)ψ̂it+1

]
+ βEt

[
Γt+1(rt+1 − (1− τKSS)(R̃

B,N
t

Πt+1
− 1))

]
. (66)

Derivative with respect to Tt.
ˆ
i
ψ̂it`(di) = 0. (67)

B Proof of Proposition 1

First-order conditions (36) immediately imply equation (40) at the steady state, since the
governmental budget constraint must be binding (µ 6= 0). Summing individual consumption
Euler equations (28) for all i ∈ I and substituting for the expression (11) of r:

ˆ
i
Uc(ci, li)`(di) = β(1 + (1− τK)r̃)

ˆ
i
Uc(ci, li)`(di) +

ˆ
i
νi`(di). (68)

The no-profit condition (9) of the fund and the no-arbitrage condition (10 at the steady state, we
deduce that r̃K = r̃. This implies with equation (40) that β(1 + r̃) = β(1 + r̃K) = 1. Plugging
this result in (68), we obtain:

ˆ
i
Uc(ci, li)`(di) = (1− τK(1− β))

ˆ
i
Uc(ci, li)`(di) +

ˆ
i
νi`(di),

which yields equation (41) since β ∈ (0, 1) and
´
i Uc(c

i, li)`(di) > 0 (otherwise we would have
Uc(ci, li) = 0 for all i and would imply an infinite consumption for all agents).

C The equivalence result

This section focuses on the proof of the equivalence result, stated in Proposition 2, and on its
generalization discussed in Section C.2.

C.1 Proof of Proposition 2

The proof follows the spirit of Correia et al. (2008). The first observation is that when there
is a full tax system, pre- and post-tax rates are independent from each other. Second, pre-tax
rates do not play any role in the planner’s constraints. In particular, the governmental budget
constraint (81), the individual budget constraints (26), and the constraints on Euler equations
(28)–(29) depend only on the post-tax rates rt and wt. So pre-tax rates can be removed from the
planner’s program and we can impose another constraint without loss of generality. We therefore
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set:

w̃t = (1− α)Z
1

1−α
t

(
r̃Kt + δ

α

)− α
1−α

, (69)

which with equations (2) implies: ζt = 1. This then leads with (1) to r̃t + δ = αZt
(
Kt−1
Lt

)α−1

and w̃t = (1− α)Zt
(
Kt−1
Lt

)α
(which are obviously compatible with (69 ). Pre-tax rates will be

determined by equilibrium capital and total labor supply.
We can further set Πt = 1, which with ζt = 1, implies that the Phillips curve holds at all

dates. The pre-tax nominal interest rate will be determined by the no-arbitrage condition (10):

R̃B,Nt = Et
[
1 + r̃Kt+1

]
.

Finally, capital and labor taxes will be computed using allocations as:

τKt = 1− rtAt−1

r̃Kt Kt−1 +
(
R̃B,Nt−1

Πt − 1
)
Bt−1

, and τLt = 1− wt
w̃t
.

With these elements, the Ramsey program can be written exactly as in the flexible-price economy,
which concludes the proof.

C.2 Generalizing our equivalence result

In this section, we generalize our equivalence result regarding monetary policy to an economy
with a non-separable utility function, an actual portfolio choice of agents (no fund intermediation),
and the possibly for agents to borrow in nominal terms. The rest of the economy (production,
risk structure) is unchanged compared to the main text.

C.2.1 Setup

We assume in this section that the agent can directly trade real and nominal assets, without the
intermediary of a fund. Real assets are capital shares and are prevented from being sold short.
Nominal assets can be held in positive or negative quantities – and as such constitute savings or
private debt. We assume that there exists an enforcement technology that makes private nominal
debt fully riskless: Nominal savings can be indistinctly invested in private or public debt.

Government, fiscal tools and monetary policy. As in the main text, the government has
to finance a public spending Gt using public and monetary policies. The fiscal policy consists
of a lump-sum transfer Tt, public debt Bt, a labor income tax τLt . The main difference is that
nominal and real assets are taxed differently. The capital tax, bearing on real assets, is denoted
τKt , while the tax on nominal assets is denoted τBt . After-tax quantities, still denoted without a
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tilde, are defined as follows:

wt = (1− τLt )w̃t, rKt = (1− τKt )r̃Kt ,
RB,Nt

Πt
− 1 = (1− τBt )(

R̃B,Nt−1
Πt

− 1). (70)

Note that as in the main text the pre-tax nominal rate is pre-determined (in period t − 1 for
the rate between t − 1 and t), while the post-tax rate is determined in the period. A remark
is in order regarding taxation of nominal assets. We have made the simplest assumption to
show that our equivalence result holds in the presence of nominal liabilities. Private and public
nominal debts are perfectly fungible: they are both traded at the same pre-tax interest rate and
both taxed identically (and thus traded at the same ex-post interest rate). In consequence, the
amount of private debt is fully consolidated (negative holdings exactly offset positive holdings)
and does not influence the governmental budget constraint. It would be possible to allow for a
more complex mechanism where the government taxes private nominal debt at a different rate.
Introducing this additional instrument would therefore not affect our neutrality result.

We now turn to the governmental budget constraint. Again assuming that the government
fully taxes the profit of all firms, we obtain for the date-t constraint:

Gt +
R̃B,Nt−1

Πt
Bt−1 + Tt ≤ τLt w̃tLt + τKt r̃

K
t Kt−1 + τBt (

R̃B,Nt−1
Πt

− 1)Bt−1 + (1− ζt −
κ

2π
2
t )Yt +Bt.

Using the relationship (1) stating that ζtYt = (r̃Kt + δ)Kt−1 + w̃tLt, as well as the definition of
post-tax rates in equations (70), the governmental budget constraint can be simplified into:

Gt + RB,Nt

Πt
Bt−1 + rKt Kt−1 + wtLt + Tt = Bt +

(
1− κ

2π
2
t

)
Yt − δKt−1. (71)

As in the main text, monetary policy consists in choosing the nominal interest rate R̃B,Nt−1 , as
well as the inflation rate πt.

Agents’ program and resource constraints. We consider an agent i ∈ I. She is endowed
with a per period utility U(c, l) over consumption c and labor supply l. We consider here
the general case, where the utility function is non-separable in consumption and labor. The
intertemporal utility remains however time-additive with a constant discount factor β ∈ (0, 1).

The agent can save in real assets, paying off the post-tax rate rKt . Her real asset holding,
denoted by aK,it , is constrained to be nonnegative: aK,it ≥ 0. She can also save in nominal assets
whose post-tax rate is RB,Nt

Πt in real terms. Her nominal savings aB,it must remain greater than an
exogenous threshold denoted −ā ≤ 0. Agents can thus borrow in nominal terms and as already
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explained, private debt is assumed to be riskless. The agent’s program becomes:

max
{cit,lit,aK,it ,aB,it }

∞
t=0

E0

∞∑
t=0

βtU(cit, lit), (72)

cit + aK,it + aB,it = (1 + rKt )aK,it−1 + RB,Nt

Πt
aB,it−1 + wty

i
tl
i
t, (73)

aK,it ≥ 0, aB,it ≥ −a, cit > 0, lit > 0. (74)

Agent i maximizes her intertemporal utility (equation (72)) subject to per period budget
constraints (equation (73)), as well as positivity and asset-specific borrowing constraints (equation
(74)). This yields the following first-order conditions:

Uc(cit, lit) = βEt
[
(1 + rKt+1)Uc(cit+1, l

i
t+1)

]
+ νK,it , (75)

Uc(cit, lit) = βEt

[
RB,Nt+1
Πt+1

Uc(cit+1, l
i
t+1)

]
+ νB,it , (76)

−Ul(cit, lit) = wty
i
tUc(cit, lit), (77)

where we denote by νK,it and νB,it the Lagrange multipliers on the real and nominal credit
constraints, respectively. Equation (75) is the Euler equation for real asset holdings, while
equation (76) is the Euler equation for nominal ones. These two consumption Euler equations
reflect the agents’ portfolio choice. Finally, equation (77) is the labor Euler equation – which is
not linear in labor anymore (unlike (19) in the GHH case).

We now turn to market clearing conditions. We now have two market clearing conditions, for
real and nominal assets respectively:

ˆ
i
aK,it `(di) = Kt, and

ˆ
i
aB,it `(di) = Bt. (78)

The clearing equations for the goods and labor markets are unchanged compared to the
baseline:

ˆ
i
cit`(di) +Gt +Kt =

(
1− κ

2π
2
t

)
Yt +Kt−1 − δKt−1, and

ˆ
i
yitl

i
t` (di) = Lt. (79)

The competitive equilibrium definition can now be stated as follows.

Definition 2 (Sequential equilibrium) A sequential competitive equilibrium is a collection
of individual allocations

(
cit, l

i
t, a

K,i
t , aB,it

)
t≥0,i∈I

, of aggregate quantities (Kt, Lt, Yt)t≥0, of price

processes (wt, rKt , R
B,N
t , w̃t, r̃

K
t , R̃

B,N
t )t≥0, of fiscal policies (τKt , τBt , τLt , Bt)t≥0, and of monetary

policies (Πt)t≥0 such that, for an initial wealth distribution
(
aK,i−1 , a

B,i
−1

)
i∈I

, and for initial values

of capital stock K−1 =
´
i a
K,i
−1 `(di), of public debt B−1 =

´
i a
B,i
−1 `(di) and of the aggregate shock

z−1, we have:
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1. given prices, individual strategies
(
cit, l

i
t, a

K,i
t , aB,it

)
t≥0,i∈I

solve the agent’s optimization
program in equations (72)–(74);

2. real and nominal financial markets as well as labor and goods markets clear at all dates:
for any t ≥ 0, equations (78)–(79) hold;

3. the government budget is balanced at all dates: equation (71) holds for all t ≥ 0;

4. factor prices (wt, rKt , R
B,N
t , w̃t, r̃

K
t , R̃

B,N
t )t≥0 are consistent with condition (5), as well as

with post-tax definitions (70);

5. the inflation path (Πt)t≥0 is consistent with the dynamics of the Phillips curve: at any date
t ≥ 0, equation (7) holds.

Note that some elements (such as the Phillips curve) remain unchanged compared to the
baseline economy.

C.2.2 Ramsey program

The Ramsey program consists in determining the competitive equilibrium, as defined in Definition
2, that maximizes the aggregate welfare (equation (22) again). The Ramsey program can formally
be expressed as:

max
(wt,w̃t,rKt ,RB,Nt ,r̃Kt ,R̃

B,N
t ,τKt ,τ

B
t ,τ

L
t ,Bt,Kt,Lt,Πt,(a

K,i
t ,aB,it ,cit,l

i
t)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ωitU(cit, lit)`(di)

]
, (80)

Gt + RB,Nt

Πt
Bt−1 + rKt Kt−1 + wtLt + Tt = Bt +

(
1− κ

2π
2
t

)
Yt − δKt−1, (81)

for all i ∈ I: cit + aK,it + aB,it = (1 + rKt )aK,it−1 + RB,Nt

Πt
aB,it−1 + wty

i
tl
i
t, (82)

aK,it , νK,it , νB,it ≥ 0 and aB,it ≥ −ā, (83)

aK,it νK,it ≥ 0 and
(
aB,it + ā

)
νB,it ≥ 0, (84)

Uc(cit, lit) = βEt
[
(1 + rKt+1)Uc(cit+1, l

i
t+1)

]
+ νK,it , (85)

Uc(cit, lit) = βEt

[
RB,Nt+1
Πt+1

Uc(cit+1, l
i
t+1)

]
+ νB,it , (86)

Ul(cit, lit) = −wtyitUc(cit, lit), (87)

Πt(Πt − 1) = ε− 1
κ

(ζt − 1) + βEtΠt+1(Πt+1 − 1)Yt+1
Yt

Mt+1
Mt

, (88)

Kt =
ˆ
i
aK,it `(di), Bt =

ˆ
i
aB,it `(di), Lt =

ˆ
i
yitl

i
t` (di) , (89)

and subject to several other constraints (that are not reported here for sake of conciseness):
the definition (2) of ζt, the definition (70) of after-tax rates, the relationship (5) between factor
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prices, the pricing kernel definition (23), and the positivity of labor and consumption choices, and
initial conditions. The interpretation of this Ramsey program is similar to the one in the baseline
economy, except that it needs to be adapted to the agent’s portfolio choice involving real and
nominal assets, as well as to the non-separability of the utility function. This has consequence for
individual and governmental budget constraints, Euler equations and market clearing conditions.

As in the baseline case, we can integrate Euler equations into the objective. We denote by
βtωitλ

K,i
t , βtωitλ

B,i
t , and βtωitλ

l,i
t the Lagrange multipliers of the Euler equations (85)–(87) of

agent i at date t. We also denote βtγt the Lagrange multiplier of the Phillips curve at date t.
Similarly to the baseline case, the objective of the Ramsey program can be rewritten as:

J = E0

∞∑
t=0

βt
ˆ
i
ωitUt,i`(di) + E0

∞∑
t=0

βt
ˆ
i
λl,it ω

i
t

(
U il,t + wty

i
tU

i
c,t

)
`(di)

− E0

∞∑
t=0

βt
ˆ
i
(λK,it − λK,it−1(1 + rKt ))U ic,t`(di)− E0

∞∑
t=0

βt
ˆ
i
(λB,it − λ

B,i
t−1

RB,Nt

Πt
)U ic,t`(di)

− E0

∞∑
t=0

βt(γt − γt−1)Πt (Πt − 1)YtMt + ε− 1
κ

E0

∞∑
t=0

βtγt (ζt − 1)YtMt,

subject to the same set of constraint as in the initial program (80)–(89).
To interpret Ramsey first-order conditions, we define the social value of liquidity, which we

still denote by ψit, in this economy as:

ψit = ωitU
i
c,t −

(
λK,it − (1 + rKt )λK,it−1

)
U icc,t −

(
λB,it −R

B,N
t λB,it−1

)
U icc,t (90)

+ λl,it

(
U icl,t + wty

i
tU

i
cc,t

)
−
(

(γt − γt−1) Πt (Πt − 1)− ε− 1
κ

γt (ζt − 1)
)
Ytω

i
tU

i
cc,t.

Compared to the baseline economy, the quantity ψit features additional terms corresponding to
the two assets (instead of one) and the wealth effect implied by the non-GHH utility function.

Remark 1 (GHH) When the utility function is of the GHH form as in the baseline economy,
we have U icl,t + wty

i
tU

i
cc,t = 0 and the expression of ψit is exactly the one of equation (33) for

the baseline economy. Equation (90) should be seen as generalization of (33) rather than a new
definition.

C.2.3 First-order conditions for the flexible-price

We now turn to the first-order conditions of the Ramsey program in the real economy (that
features κ = 0, ζt = 1, and Πt = 1 at all dates t). The Ramsey program can be written as:

max
(wt,rKt ,RB,Nt ,(aK,it ,aB,it ,cit,l

i
t)i)

J, (91)
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subject to budget constraints (81) and (82), Euler equations (85)–(87), and aggregation equations
(89). As in the baseline economy, the Ramsey program is expressed in post-tax rates.

Compared to the GHH case, the non-separable utility function leads to the introduction of
an additional first-order condition – with respect to labor supply lit, which is:

−ψl,it = ψitwty
i
t − µt

(
Lt − (1− α) Yt

wt

)
wty

i
t

Lt
, (92)

where ψl,it is the social valuation of an extra unit of labor supplied by agent i, defined as:

ψl,it = ωitU
i
l,t −

(
λK,it − (1 + rKt )λK,it−1

)
U icl,t −

(
λB,it −R

B,N
t λB,it−1

)
U icl,t + λl,it

(
U ill,t + wty

i
tU

i
cl,t

)
,

which is very similar to the expression of ψit – but based on the marginal disutility of labor, U il,t,
instead of the marginal utility of consumption, U ic,t.

In other words, equation (92) can thus be seen as a generalized Euler equation for labor (87),
as seen from planner’s perspective. It therefore includes the effect of labor supply on aggregate
production and on governmental budget constraint. Marginal utilities for consumption and labor
are also replaced by ψ and ψl respectively.

The first-order condition with respect to post-tax wage is:
ˆ
i
ωitψ̂

i
ty
i
tl
i
t`(di) = −

ˆ
i
λl,it y

i
tU

i
c,t`(di), (93)

where the aggregate net liquidity value, weighted by individual labor supply in efficient terms, is
set equal to individual labor distortions, represented by the Lagrange multiplier, λl,it .

First-order conditions with respect to real and nominal post-tax rates can be expressed:
ˆ
i
ψ̂ita

B,i
t−1`(di) = −

ˆ
i
λB,it−1U

i
c,t`(di), (94)

ˆ
i
ψ̂ita

K,i
t−1`(di) = −

ˆ
i
λK,it−1U

i
c,t`(di). (95)

Both equations are very similar to each other as well as to the one with respect to the fund rate
in the baseline economy.

Finally the first-order conditions with respect to nominal and real savings are:

ψ̂it = βEt
[
RB,Nt+1 ψ̂

i
t+1

]
, (96)

µt = βEt
[
µt+1

(
1 + r̃Kt+1

)]
+ βEt

[
(1 + rKt+1 −R

B,N
t+1 )ψ̂it+1

]
. (97)

These equations provide Euler-like equations for the net liquidity cost ψ̂it and the Lagrange
multiplier, µt, for the governmental budget constraint.

Remark 2 (GHH) When the utility function is of the GHH form, we have ψl,it + ψitwty
i
t =
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λl,it (U icl,twtyit + U ill,t) = −λl,it (ϕlit)−1wty
i
tU

i
c,t. Equation (92) is then equivalent to:

λl,it U
i
c,t = −ϕµt

(
Lt − (1− α) Yt

wt

)
lit
Lt
.

The first-order condition (93) on labor becomes thus, using (79):
ˆ
i
ωitψ̂

i
ty
i
tl
i
t`(di) = ϕµt

(
Lt − (1− α) Yt

wt

)
, (98)

which is exactly the first-order condition on wt in the baseline economy (ψ̂it definitions coincide
in both economies).

Other first-order conditions are not affected beyond the generalization of ψi and ψ̂i (and the
difference in market structure).

Remark 3 (The fund) When agents do not form any explicit portfolio choice and invest only
through a fund, there is only first-order equation with respect to savings. Equations (94) and (95)
collapse and reduce to equation (37) in the baseline case.

Second, we also have 1 + rKt+1 = RB,Nt because of the absence of specific nominal instruments
for the planner. First-order conditions are then identical to (35) and (36) in the baseline model.

All previous remarks show that our new set of first-order conditions can be seen as a
generalization of our first-order conditions in the baseline economy.

C.2.4 A nominal economy with a full set of instruments

We consider a nominal economy with κ > 0, and possibly ζt and Πt different from one. In that
case, the Ramsey program can be written as:

max
(wt,rKt ,w̃t,r̃Kt ,RB,Nt ,Πt,(aK,it ,aB,it ,cit,l

i
t)i)

J, (99)

subject to the same equations as in the real economy case (without κ 6= 0), as well as the Phillips
curve (88) and the factor price equations (2) and (5). The same mechanism as in the baseline
economy is at stake here and the proof of Section C.1 could be reproduced in a straightforward
way. The pre-tax instruments w̃t and r̃t intervene only in the markup coefficient ζt of equation (2)
and in the capital-to-labor ratio equation (5). The planner can thus set ζt = 1 using one pre-tax
instrument, and then let the capital-to-labor ratio determine the other pre-tax instrument. When
only one instrument is available, ζt cannot be set to one without constraining the capital-to-labor
ratio. Furthermore, once ζt is set to one, inflation has no role anymore due to the availability of
a tax on nominal assets, which makes inflation a redundant instrument. Inflation can thus be set
to 1, as in the real case. In consequence, we can state the following result.

54



Proposition 3 (An equivalence result) When labor, nominal and real capital taxes are avail-
able, the government exactly reproduces the real-economy allocation.

Note that the result would not hold anymore if the nominal tax is removed as an independent
instrument and for instance set equal to the real capital tax. In that case inflation would be
used to partly substitute for this absence of specific nominal instrument.

D Truncated model

We derive the planner’s first-order conditions for truncated economies. Section D.1 assumes a
full set of fiscal tools, while Section D.2 assumes fixed capital tax.

D.1 Program in the economy with full set of fiscal tools

D.1.1 Program formulation

We take advantage of the equivalence result to simplify the program expression, which is:

max
((a

t,yN
,c
t,yN

,l
t,yN

)
yN∈YN ,wt,rt,Bt)t≥0

E0

∞∑
t=0

βt
∑
yN∈Y

[
St,yN

(
ωyN ξyNU(ct,yN , lt,yN )

−
(
λt,yN − λ̃t,yN (1 + rt)

)
ξyNUc(ct,yN , lt,yN )

)]
,

s.t. Gt +Bt−1 + rt (Bt−1 +Kt−1) + wtLt + Tt = Bt +Kα
t−1L

1−α
t − δKt−1,

λ̃t,yN =
∑
ỹN∈YN St−1,ỹNλt−1,ỹNΠt,ỹN ,yN

St,yN
, (100)

ct,yN + at,yN = wtlt,yN yyN + (1 + rt) ãt,yN + Tt, (101)

at,yN ≥ 0 and ãt,yN ,=
∑

ỹN∈YN
ΠỹNyN ,t

St−1,ỹN

St,yN
at−1,ỹN , (102)

lt,yN = (χyyNwt)φ. (103)

D.1.2 First-order conditions

We define the net social value of liquidity for history yN similarly to definitions (33) and (34):

ψ̂t,yN = ωyN ξyNUc(ct,yN , lt,yN )−
(
λt,yN − λ̃t,yN (1 + rt)

)
ξyNUcc(ct,yN , lt,yN )− µt.
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The first-order conditions on at,yN , wt, rt, are, respectively:

ψ̂t,yN = βEt
[
(1 + rt+1)

∑
ỹN∈YN

Πt,yN ỹN ψ̂t+1,ỹN

]
if νyN = 0 and λt,yN = 0 otherwise, (104)

∑
yN∈YN

St,yN ψ̂t,yN yyN lt,yN = ϕµt(Lt − (1− α) Yt
wt

), (105)

∑
yN∈YN

St,yN ψ̂t,yN ãt,yN = −
∑

yN∈YN
St,yN λ̃t,yN ξyNUc(ct,yN , lt,yN ), (106)

µt = βEt
[
µt+1(1 + r̃Kt+1)

]
,and

∑
yN∈YN

St,yN ψ̂t,yN = 0. (107)

D.2 Program in the economy without time-varying capital tax

D.2.1 Program formulation

We can rely on Section A.3 to obtain the expression of the truncated Ramsey program in absence
of time-varying capital taxes. The program is:

max(
(a
t,yN

,c
t,yN

,l
t,yN

)
yN∈YN ,wt,rt,Bt

)
t≥0

E0

∞∑
t=0

βt
∑
yN∈Y

[
St,yN

(
ωyN ξyNU(ct,yN , lt,yN )

− (λt,yN − λ̃t,yN (1 + rt))ξyNUc(ct,yN , lt,yN )
)]
,

subject to truncated-history constraints:

ct,yN + at,yN = wt(χyN0 wt)φyyN + (1 + rt)ãt,yN + Tt,

ãt,yN =
∑

ỹN∈YN
Πt,ỹNyN

St−1,ỹN

St,yN
at−1,ỹN ,

to aggregate constraints:

Gt + rt (Bt−1 +Kt−1) + wtLt = Bt −Bt−1 − Tt +
(

1− κπ
2
t

2

)
Kα
t−1L

1−α
t − δKt−1,

Πt(Πt − 1) = ε− 1
κ

(ζt − 1) + βEtΠt+1(Πt+1 − 1)Yt+1
Yt

Mt+1
Mt

,

ζt = 1
αZt

(r̃Kt + δ)
(
Kt−1
Lt

)1−α
,

At = Kt +Bt =
∑
yN∈Y

St,yNat,yN , Lt =
∑
yN∈Y

St,yN y
N
0 lt,yN ,
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and to interest rate constraints:

(rt − (1− τKSS)r̃Kt )At−1 = (1− τK)
(
R̃B,Nt−1

Πt
− 1− r̃Kt

)
Bt−1, (108)

Et

[
RB,Nt

Πt+1

]
= Et

[
1 + r̃Kt+1

]
. (109)

D.2.2 First-order conditions

We denote by βtΓt and βtΥt the Lagrange multipliers on (108) and (109), respectively. We define
the pricing kernel Mt as follows:

Mt =
∑

yN∈YN
St,yN ξyNωyNUc(ct,yN , lt,yN ).

Derivative with respect to R̃B,Nt .

(1− τKSS)Et
[Γt+1

Πt+1

]
Bt = ΥtEt

[ 1
Πt+1

]
. (110)

Derivative with respect to r̃Kt .

Υt−1 + Γt(1− τKSS) (At−1 −Bt−1) =ε− 1
ακ

γtKt−1Mt.

Derivative with respect to Πt.

0 = µtκ (Πt − 1) + (γt − γt−1) (2Πt − 1)Mt +
(
Γt
(
1− τK

)
Bt−1 −Υt−1

) R̃B,Nt−1
YtΠ2

t

. (111)

Derivative with respect to rt.∑
yN∈YN

St,yN ψ̂t,yN ãt,yN = −
∑

yN∈YN
St,yN λ̃t,yN ξyNUc(ct,yN , lt,yN )− ΓtAt−1.

Derivative with respect to wt.

µtϕ

(
Lt − (1− α) Yt

wt
(1− κ

2 (Πt − 1)2)
)

=
∑

yN∈YN
St,yN ψ̂t,yN y

N
0 lt,yN

− (1− α)ϕ
wt

(
(γt − γt−1)Πt(Πt − 1) + ε− 1

κ
γt

)
YtMt.
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Derivative with respect to Bt.

µt = βEt
[
µt+1

(
1− δ + ζ−1

t+1(r̃Kt+1 + δ)
(

1− κ

2 (Πt+1 − 1)2
))]

− αβEt
[(

(γt+1 − γt)Πt+1(Πt+1 − 1) + ε− 1
κ

γt+1

)
Yt+1
Kt

Mt+1

]
+ ε− 1

κ
βEt

[
γt+1

ζt+1Yt+1
Kt

Mt+1

]
+ β(1− τKSS)Et

[
Γt+1

(
R̃B,Nt

Πt+1
− 1− r̃Kt+1

)]
.

Derivative with respect to at,yN .

ψ̂t,yN = βEt

(1 + rt+1)
∑

ỹN∈YN
Πt,yN ỹN ψ̂t+1,ỹN

 (112)

+ βEt

[
Γt+1

(
rt+1 − (1− τKSS)

(
R̃B,Nt

Πt+1
− 1

))]
.

Derivative with respect to Tt. ∑
yN∈YN

St,yN ψ̂t,yN = 0. (113)

It can observed that FOCs in the truncated model are very similar to the ones of the
full-fledged model in Section A.3.

D.3 Program in the economy without time-varying labor tax

We keep the same notation as in the no-capital tax case of Section D.2. The program is also very
similar to the one of Section D.2, except that the capital tax is time-varying, and the labor tax
is not. We have a new constraint:

α
wt

1− τLSS
Lt = (1− α)Kt−1(r̃Kt + δ),

while the constraints on rt (fund no-profit condition (9)) and on R̃B,Nt (no-arbitrage constraint
(10)) are not binding anymore.

Derivative with respect to r̃Kt .

ΓLt = ε− 1
α(1− α)κγtMt.
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Derivative with respect to Πt.

0 = µtκ (Πt − 1) + (γt − γt−1) (2Πt − 1)Mt. (114)

Derivative with respect to rt.∑
yN∈YN

St,yN ψ̂t,yN ãt,yN = −
∑

yN∈YN
St,yN λ̃t,yN ξyNUc(ct,yN , lt,yN ).

Derivative with respect to wt.

µtϕ

(
Lt − (1− α) Yt

wt

(
1− κ

2 (Πt − 1)2
))

=
∑

yN∈YN
St,yN ψ̂t,yN y

N
0 lt,yN (115)

− (1− α)ϕ
wt

(
(γt − γt−1) Πt (Πt − 1) + ε− 1

κ
γt

)
YtMt + ΓLt

α

1− τLSS
(1 + ϕ)Lt.

Derivative with respect to Tt. ∑
yN∈YN

St,yN ψ̂t,yN = 0. (116)

Derivative with respect to Bt: the public debt.

µt = βEt
[
µt+1

(
1− δ + ζ−1

t+1(r̃Kt+1 + δ)
(

1− κ

2 (Πt+1 − 1)2
))]

− αβEt
[(

(γt+1 − γt) Πt+1 (Πt+1 − 1) + ε− 1
κ

γt+1

)
Yt+1
Kt

Mt+1

]
(117)

+ ε− 1
κ

βEt
[
γt+1

ζt+1Yt+1
Kt

Mt+1

]
− β(1− α)Et

[
ΓLt+1(r̃Kt+1 + δ)

]
.

Derivative with respect to ait: the net saving of consumers.

ψ̂t,yN = βEt

(1 + rt+1)
∑

ỹN∈YN
Πt,yN ỹN ψ̂t+1,ỹN

 . (118)

E Computing ξs and ωs using matrix representation

In this section, we provide closed-form formulas for preference multipliers ξs (Section E.1) and
the Pareto weights ωs. We start with some notation:

◦ is the Hadamard product, ⊗ is the Kronecker product, × is the usual matrix product.

For any vector V , we denote by diag (V ) the diagonal matrix with V on the diagonal.
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The matrix representation consists in stacking together the equations characterizing the
steady-state, so as to provide a convenient matrix notation for solving the steady state. It also
provides an efficient solution to compute the values for the coefficients (ξyN ) and (ωyN ). The
starting point is to observe that a history yN can be seen as a N -length vector {y−N+1, . . . , y0}
of elements of Y. The number of histories is Ntot = Y N . We can identify each history by an
integer kyN = 1, . . . , Ntot:

kyN =
N−1∑
k=0

N−N+1−k
tot (yk − 1) + 1, (119)

which corresponds to an enumeration in base Y .

E.1 A closed-form formula for the ξs

Let S be the Ntot-vector of steady-state history sizes that is defined as S = (Sk
yN

)k
yN

=1,...,Ntot ,
by stacking history sizes for all histories using the enumeration given by (119). Similarly, let a, c,
`, ν, Uc, Ucc be the Ntot-vectors of end-of-period wealth, consumption, labor supply, Lagrange
multipliers, marginal utilities, and derivatives of the marginal utility, respectively. These vectors
are known from the steady-state equilibrium of the Bewley model. Each element is defined as
the truncation of the relevant variable computed using equation (49). We also define:

W = w


y1
...
yY

⊗ 1B, L =


y1
...
yY

⊗ 1B,

where 1B is a vector of 1 of length Y N−1. We define P as the diagonal matrix having 1 on the
diagonal at yN if and only if the history yN is not credit constrained (i.e., νyN = 0), and 0
otherwise. We similarly define Pc = I− P, where I is the (Ntot ×Ntot)-identity matrix. Noting Π
as the transition matrix across histories, we obtain the following steady-state relationships:

S = ΠS, (120)

S ◦ c + S ◦ a = (1 + r)Π (S ◦ a) + (S ◦W ◦ `) , (121)

Pca = −Pcā1Ntot×1, (122)

where (120) is the dynamics of history-sizes, (121) is history budget constraints and (122) history
credit-constraints.

Euler equations (52) imply that we are looking for a vector ξ such that:

S ◦ ξ ◦ u′ (c) = β(1 + r)Π>
(
S ◦ ξ ◦ u′ (c)

)
+ ν,

where the matrix Π> (the transpose of Π) is used to make expectations about next period
histories. We deduce from this equation that the vector ξ is defined by the following closed-form
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formula:
ξ =

[
P
(
diag

(
u′ (c)

)
− β(1 + r)Π> × diag

(
u′ (c)

))
+ Pc

]−1
ν. (123)

E.2 Computing the Pareto weights ω

The first-order conditions (104)–(107) of the planner at the steady-state can respectively be
written as follows using matrix notation:

Pψ̂ = βPΠ>ψ̂ (1 + r) ,

Pcλp = 0,

(y ◦ l)′ ×
(
S ◦ ψ̂

)
= µL

(
1 + ϕ

w − FL
w

)
,

1ᵀ
Y L ×

(
S ◦ ψ̂ ◦ ã

)
= 1ᵀ

Y L ×
(
S ◦ λ̃ ◦ ξh ◦Uc

)
,

1 = β(FK + 1),

S ◦ ψ̂ = 0.

We can deduce after some algebra that the Pareto weights ω must satisfy the following two
relationships for the planner’s first-order conditions to hold:

H1ω = 0 and H2ω = 0,

where H1 = H̃1D(S ◦ ξ ◦Uc), H2 = H̃2D (S ◦ ξ ◦Uc) and:

H̃1 ≡ 1ᵀY L × [D (ã) N + D (ξh ◦Uc) ΠJ]−AQ,

Q ≡

 y ◦ l
L
(
1 + ϕw−FLw

)
′ ×N,

N ≡ IdYN −B (Pc + PMB)−1 PM,

J ≡ − (Pc + PMB)−1 PM,

as well as:

M ≡ IdYN − β (1 + r) ΠS + β
r − FK

L
(
1 + ϕw−FLw

)S (y ◦ l)′ ,

ΠS ≡ DSΠ>D−1S,

B ≡ D (ξh ◦Ucc) ((1 + r) Π− IdY L) ,

H̃2 ≡ 1ᵀ
Y L ×N−Q.
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The Pareto weights are finally given as a solution of the following minimization problem:

min
ω

∥∥∥∥ω − 1
Ntot

1Ntot×1

∥∥∥∥2
,

s.t. H1ω = 0, H2ω = 0, and
∑
yN

ωyN = 1.

The solution linear-quadratic problem can be found by simple linear algebra (H1 and H2 are
known), introducing Lagrange multipliers on each constraint.

F Comparison of the truncation method with other solution
methods

We simulate the same model with three different solution methods. We assume full price flexibility
and that there is no public spending need (G = 0). Taxes are thus set to 0. Table 4 presents the
calibrated model parameters. The labor process is the same as in the simulations of Section 5.1.
The three simulation methods solve for transitory dynamics around the steady-state allocation,
which is the same for the three solution methods.

Parameter Description Value

Preference and technology

β Discount factor 0.99
α Capital share 0.36
δ Depreciation rate 0.025
ā Credit limit 0.0
χ Scaling param. labor supply 0.068
ϕ Frisch elasticity labor supply 0.5

Shock process

ρz Autocorrelation TFP 0.95
σz Standard deviation TFP shock 0.31%
ρy Autocorrelation idio. income 0.99
σy Standard dev. idio. income 14.0%

Table 4: Parameter values in the baseline calibration. See text for descriptions and targets.

Table 5 presents the first- and second-order moments of model simulations with three methods:
(i) the histogram method developed by Rios-Rull (2001), Reiter (2009), and Young (2010) (column
“Reiter”), (ii) the method of Boppart et al. (2018) and Auclert et al. (2019) (column “BKM”),
(iii) the truncation method with N = 5 (column “Trunc”). We report the simulation outcomes
for several variables. We report the mean (Mean) and, to allow for comparison, the standard
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deviation normalized by the mean of the relevant variable (rows Std). For example, the variable
“Std” for the variable GDP should be understood as std(GDP )/mean(GDP ). We also report
two autocorrelations. The three solution methods for the incomplete market economy yield very
close outcomes. Note that we have chosen to use the same truncation length (N = 5) as in the
main paper. Increasing the truncation length would improve the accuracy, but at the cost of a
higher computing time. This would be manageable in this comparison exercise, but less so when
solving for the optimal Ramsey program. Finally, the incomplete-market economy generates very

Reiter BKM Trunc

GDP Y Mean 1.397 1.397 1.397
Std 0.017 0.017 0.016

Capital K Mean 18.34 18.34 18.34
Std 0.015 0.015 0.015

Aggregate consumption C Mean 0.939 0.939 0.939
Std 0.014 0.014 0.013

Aggregate laborL Mean 0.328 0.328 0.328
Std 0.006 0.006 0.005

corr(C, Y ) 0.954 0.958 0.951
corr(Y, Y−1) 0.973 0.974 0.971

Table 5: Method Comparison

different allocations from the complete-market one. In this last case, the equilibrium interest
rate is 1 + r = 1/β, the capital stock 11.64 (instead of 18.34), and the GDP is 1.135 (instead of
1.397). This shows that the results of Table 5 are not driven by the fact that heterogeneity has a
little role to play in the IM economy.

G Further comparison results

We present here additional comparison elements with respect to the literature. This extends the
comparison of Section 6. We start with presenting how we solve for the time-0 problem that we
use in this comparison.

G.1 Solving for the time-0 and timeless problems without perturbation

When the initial distribution differs from the steady-state one (as it is the case in Section 6)
we cannot rely on perturbation technique. The resolution implies then the computation of a
transition path under perfect foresight from initial conditions to the long-run steady state. This
computation relies on the resolution of a non-linear system, for which we impose initial conditions
and that the steady state is reached after 150 periods of time. We check that our results are not
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too sensitive to this convergence within 150 periods. From a technical point of view, we rely on
the non-linear “simul” command of Dynare for this computation.

For the time-0 problem, the initial values of the Lagrange multipliers for Euler equations and
for the Phillips curve are set to 0. This reflects the fact that the planner is not constrained by
its past commitments.

For a timeless model, the initial values of Lagrange multipliers (for Euler equations and the
Phillips curve) are not set to zero but to their steady-state values.

G.2 Additional comparison elements

We extend the discussion of Section 6 and report additional results regarding the comparison with
the literature in the case of the time-0 problem. More precisely, we conduct a comparative statics
on several model parameters by measuring the change in inflation on impact. We focus on three
parameters: (i) the cost of price adjustment κ, (ii) the borrowing limit ā, (iii) a time-varying
idiosyncratic risk, as in Acharya et al. (2020).

We model the time-varying idiosyncratic productivity of the last point as follows. We
denote by ȳ the mean productivity across agents type, which is constant by construction of the
productivity process. We recall that the aggregate risk is zt (and aggregate TFP is Zt = exp(zt)).
The time-varying productivity in state i and date t is defined as:

yi,t = yi − φTV × zt × (yi − ȳ), (124)

where yi is the constant productivity level in state i and φTV a scalar. A positive φTV generates
a countercyclical time-varying mean-preserving spread in idiosyncratic productivity. When
aggregate productivity falls (zt is negative), productivity levels below the mean ȳ fall, while
productivity levels above the mean increase. With specification (124), it can be checked that the
proportional change in the standard deviation of idiosyncratic risk is −φTV zt.

Table 6 presents our comparative static results. We consider a negative productivity shock,
corresponding to a 1% fall in TFP on impact. The parameter values are in columns, while the
economy is in rows. The last column reports the change in inflation on impact, in percent.

Economy κ ā φTV ∆π (%)

(0) 30 5 0 1.19
(i) 60 5 0 0.79
(ii) 30 2 0 0.78
(iii) 30 5 3 1.25

Table 6: Comparative statics about the inflation on impact.

Economy (0) is the benchmark economy, presented in the main text. The optimal inflation
increases by 1.19% on impact, as can be seen in Figure 3. Economy (i) has a higher price

64



adjustment cost κ. The same productivity shock generates a smaller increase in inflation, equal
to 0.79%. As can be expected, the higher the cost of adjusting prices, the lower the optimal
inflation volatility. Economy (ii) has a stricter borrowing limit – agents can borrow less. Inflation
volatility is reduced to 0.78%, which reflects the fact that the planner has smaller incentives
to use inflation for redistribution purposes. Indeed, because of a smaller outstanding amount
of nominal debt in the economy, inflation generates less redistribution on impact through the
Fisher effect discussed by Nuño and Thomas (2020). This result is consistent with the fact that
inflation volatility increases when the borrowing limit approaches the natural borrowing limit as
in Bhandari et al. (2020). Economy (iii) is the benchmark economy but with a counter-cyclical
income risk (as in equation (124)). Consistently with Acharya et al. (2020), we find that this
increases inflation volatility, which reaches 1.25% here.
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